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Perceiving the Size of Trees: Form as Information About Scale

Geoffrey P. Bingham

Physical constraints on growth produce continuous variations in the shape of biological objects that
correspond to their sizes. The author investigated whether 2 such properties of tree form could be

visually discriminated and used to evaluate the height of trees. Observers judged simulated tree

silhouettes of constant image size. Trees were placed appropriately within a ground texture
gradient, as were 6 cylinders. Observers judged trees, then cylinders. Tree form was shown to
confer a metric on ground texture gradients. Different observers judged cylinders without seeing
trees. The horizon ratio was shown to be ineffective as an alternative source of scale. The largest
trees were systematically underestimated. Comparison was made to judgments of real trees viewed
binocularly, monocularly through a tube, or in pictures. Underestimation of larger trees with
restricted viewing was comparable to that obtained using simulated trees.

[Olrganisms cannot violate the laws of physics and chemis-
try. . . knowing how these laws operate and confine the orga-
nismic expression of size, form, and structure is essential to
understanding biology ...

Nowhere else in biology than in plants do we find such
convincing evidence that physical laws and processes link
form with function and thus have confined the scope of or-
ganic expression within boundaries that have never been
breached. K. J. Niklas (1992, pp. ix, 6.)

The problem of size perception arises because the size of
the image projected from an object varies with the distance
of the object from the observer. Image size alone provides no
information about object size. The traditional solutions to
this problem are size—distance invariance theory and familiar
size.

In size—distance invariance theory, the inverse relation be-
tween image size and object distance is used to derive per-
ceived object size, assuming that information about distance
is available (Boring, 1940; Epstein, 1977; Gogel, 1977;
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Hochberg, 1978; Holway & Boring, 1941; Kilpatrick &
Ittelson, 1953; Lian, 1981; Schiff, 1980). This confounds the
problems of size and distance perception. Because distance
perception is itself a difficult problem, an independent ap-
proach to size perception would be advantageous. Familiar
size does not presume information about distance. For this
reason, familiar size is usually included among hypothetical
sources of information about distance (Epstein, 1961; Gib-
son, 1950; Gogel, 1977; Hartmen & Harker, 1957; Higashi-
yama, 1984; Hochberg, 1978; Predebon, 1990; Schiff, 1980).

The familiar size solution is simply that the observer
knows the size of certain identifiable objects that have highly
stable and definite sizes. Familiar size reduces size percep-
tion to form perception because object recognition is
achieved by identifying characteristic forms. Familiar size is
usually considered with respect to constructed objects such
as playing cards, matchbooks, and watches because the rel-
evant forms are distinct and the sizes are well restricted.
Regularity and predictability are produced by constraints im-
pinging on the formation of the objects in question. The na-
ture of human activity and the associated scale constrains the
sizes and shapes of constructed objects (Drillis, 1963). Hu-
man factors and ergonomics comprise efforts to describe
such constraints on the forms of tools, furniture, and build-
ings. Because the sizes of such objects derive from human
scale, they are determined indirectly by constraints on the
sizes of people, a type of biological object. The sizes and
forms of biological objects, in turn, are constrained by physi-
cal and biological laws (Niklas, 1992). The study of such
laws comprises functional morphology and allometry

. (Calder, 1984; Hildebrand, Bramble, Liem, & Wake, 1985;

McMahon, 1984; McMahon & Bonner, 1983; Niklas, 1992;
Norberg, 1988; Peters, 1983; Schmidt-Nielsen, 1984,
Thompson, 1961; Wainwright, Biggs, Currey, & Gosline,
1976).

The application of familiar size to biological objects would
seem to be difficult because the sizes for a given type of
object are less restricted and the relevant forms are more
complex and subject to continuous variations. However, al-
lometry reveals that those variations are scale specific. In his
classic work on morphology, D’ Arcy Thompson (1961) de-
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scribed organic form as a “diagram of forces” and, following
observations of Galileo, noted that organic forms alter in the
face of scale changes to preserve the integrity of structure and
function.! The forms must change because an object’s vari-
ous linear and geometric dimensions scale differently to rel-
evant forces. For instance, as discussed by Galileo, the
strength of a bone required to support its weight is propor-
tional to the square of its diameter, whereas the weight to be
supported is proportional to the cube of its length. As a bone
increases in size, its diameter must increase faster than its
length in order to support the weight. Bigger bones must be
relatively thicker. Such changes in form are especially promi-
nent in biological objects because their materials remain in-
variant over scale changes wrought by growth.

Can observers use continuous variations in form to per-
ceive variations in size? If so, the generalization would make
the familiar size solution very powerful. However, gener-
alization depends, in part, on discriminative abilities in form
perception. Pittenger and Todd (1983) demonstrated that
continuous variations in the form of the growing human body
from infancy to adulthood could be discriminated by ob-
servers who used the information to judge age levels. Also,
the perception of age by means of the continuously trans-
forming shape of the head over growth has been studied
extensively in work that partly inspired the current approach
to size perception (Mark, Todd, & Shaw, 1981; Pittenger &
Shaw, 1975a, 1975b; Pittenger, Shaw, & Mark, 1979; Shaw,
Mark, Jenkins, & Mingolla, 1982; Shaw, McIntyre, & Mace,
1974; Shaw & Pittenger, 1977; Todd & Mark, 1981; Todd,
Mark, Shaw, & Pittenger, 1980).

What of variations in the forms of plants? Observers can
certainly distinguish a stalk of grass from a tree. The forms
are fairly distinct. Is the same true of small versus large trees?
In this instance, the size can vary continuously from a foot
to a hundred feet. Do specific continuous variations in tree
form accompany such variations in size? If so, can observers
distinguish such variations in form and use this information
to evaluate size?

Studying the perception of tree sizes provides a good test
case for a reduction of size perception to form perception by
virtue of physical constraints on form. First, trees are ex-
tremely common in the visual environment, and they include
the range of sizes directly relevant to human activity. Their
presence could be used to determine the size of neighboring
objects, including human artifacts (e.g. buildings) and terrain
features (e.g. rock outcrops). Second, their frequency of ap-
pearance in the surround means that observers will be fa-
miliar with them. Third, tree morphology has been studied
extensively. Some of the scaling laws that determine changes
in form accompanying changes in size with growth have been
described (Borchert & Honda, 1984; Borchert & Slade, 1981;
Fisher & Honda, 1977, 1979a, 1979b; Honda & Fisher, 1978;
Honda, Tomlinson, & Fisher, 1981; McMahon & Bonner,
1983; McMahon & Kronauer, 1976; Niklas, 1992; Norberg,
1988; Turrell, 1961; Wilson & Archer, 1979; Zimmermann,
1978a, 1978b). Fourth, the same scaling laws apply to most
other forms of terrestrial vegetation, and some apply as well
to aspects of the form and structure of vertebrates
(McMahon, 1984; McMahon & Bonner, 1983; Peters, 1983).
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Fifth, the relevant forms are complex and the variations in
form are sufficiently subtle to provide a good test of the
ability of the visual system to detect subtle variation in com-
plex forms and use it as information about size.

Two scaling laws are known to determine characteristic
properties of tree form that vary with tree height. First, suc-
cessful mechanical support is achieved in trees by preserving
elastic similarity (McMahon, 1975; McMahon & Kronauer,
1976; Niklas, 1992; Norberg, 1988). The diameter (D) of a
branch or tree trunk scales with the remaining length along
the branch or height (H) of the trunk to its tip as follows:
D = a(H)'. This is consistent with an empirically derived
relation, which also is dependent on maximum heights for
given climate zones (Kira, 1978). (See Appendix A). The
relation between diameter and height in this latter case 1
hyperbolic:

_ MH
“aM-H'

where M is the maximum height for trees in a given climate
zone. Both relations predict that the ratio of the diameter of
the trunk to the height of a tree is specific to the actual height
of the tree. (This ratio also applies to any point along a branch
using the diameter at that point and the remaining length to
the tip.) Equation 1 determines a relation between actual tree
height and H/D of the form H = M — k[H/D]. Because the
H/D ratio is well preserved in tree images (see Appendix B),
the relation determines optical information for tree height.

Second, the number of terminal branches in a tree scales
with the size of the tree (Borchert & Honda, 1984; Turrell,
1961). To collect light a tree covers approximately the sur-
face of its branching volume with leaves of constant size.
Branches are required in constant proportion to the leaves.
An exponential branching process is constrained by the hy-
drodynamics of the nutrient distribution, producing confor-
mity to a surface law (Borchert & Honda, 1984; Honda, Tom-
linson, & Fisher, 1981; Zimmermann, 1978a, 1978b). This
understanding has been confirmed (Kira, 1978; Turrell,
1961) and allows one to predict N =b(H)?, where N is
the number of branches and H is tree height. Thus, the
number of branches, a property well preserved in images,
also provides information about tree height, as follows:
H = c(N)*, where ¢ = 1/(b).

D ¢y

Experiment 1: Judging Isolated Silhouettes and Real
Trees

Can observers use forms generated by such scaling rela-
tions to judge tree size? To investigate this question, we used
the two scaling relations to generate tree silhouettes. To iso-
late tree form as information about size, image height was
held constant over variations in actual modeled tree height.

! Similar considerations are found in the study of scale models
in engineering where object form and materials must be distorted
or altered in small-scale models to preserve structural integrity and
function for purposes of testing (Baker, Westine, & Dodge, 1973;
Emori & Schuring, 1977; Sziics, 1980).
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PERCEIVING THE SIZE OF TREES

Sithouettes were presented without information about dis-
tance. According to size—distance invariance theory, such
displays would contain no information whatsoever about tree
heights.

The intention was to ask observers to judge the height (in
feet) of simulated trees. To evaluate their performance, we
required a standard for comparison. How well might ob-
servers judge the heights of real trees under natural (but oth-
erwise comparable) viewing conditions? To address this
question, we asked observers to judge the height of real trees
on the Indiana University campus from distances that pre-
served a constant tree image height. Following this, observ-
ers judged tree silhouettes on white paper, each appearing
without image background structure.

Method

Participants. Twenty-four graduate or undergraduate students
at Indiana University participated in the study. Twelve were men,
and 12 were women. All had normal or corrected-to-normal vision.
Participants were paid at $4.25 an hour.

Display generation. We obtained from Rolf Borchert the pro-
gram used to generate the simulations of tree-branching processes
that were reported in Borchert and Honda (1984). This program was
originally written by Honda (1971) to produce images of stick figure
trees in architectures determined by varying branching angles and
lengths. The program was modified by Borchert and Honda (1984)
to include simulation of the hydrodynamic processes (Zimmer-
mann, 1978a, 1978b), which constrain branch numbers to conform
to a square law of increase. The program was further modified by
adding the Kira relation to determine branch and trunk thicknesses.
A maximum tree height of 40 m was used. This is appropriate for
temperate zone trees according to the data reported in Kira (1978).
The coefficient in the Kira relation was set to a value appropriate
for trees growing in isolation. In coupling the scaling for thickness
and for branching, we effectively set the coefficient of the branch
scaling on the basis of an assumed leaf terminal rosette size of
5 m?,

Unfortunately, we did not have descriptions of temperate zone
architectures that described trees in terms of branching character-
istics. The extant literature addresses tropical trees because archi-
tectures in other climate zones correspond to a subset of those found
in the tropics (Borchert & Tomlinson, 1984; Hallé, Oldeman, &
Tomlinson, 1978; Honda, 1971; Tomlinson, 1983). Without at-
tempting to model specific species of temperate zone trees, we
manipulated the architectural parameters to produce seven different
architectures that were similar to familiar types. These are shown
in Figure 1. We selected these architectures on the basis of their
appearance. We also determined the number of orders (or years) of
growth generated for each architecture on the basis of appearance.
If allowed to iterate too far, the branching algorithm in some ar-
chitectures eventually produced trees of bizarre appearance. (For
instance, Architecture D, which is similar to a small fruit tree, began
to look quite strange at higher orders.?) Successive heights used in
Architecture C are shown in Figure 2.

In the 7 architectures, images of 56 trees of varying height were
generated. The simulation painted the thickness on stick figure trees
projected on a plane that contained the trunk and was perpendicular
to the line of sight. To avoid foreshortening of these flat cardboard
diameters we used parallel projection, drawing the trees as if seen
from a great distance and then magnifying to achieve significant and
invariant image heights. Black sithouettes of 9-cm-high trees were
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printed on a white and unstructured surround. A laser printer was
used to print the images on sheets of paper that measured 19 square
cm.

Procedure. Observers first estimated the height (in feet) of 16
actual trees observed on the Indiana University campus at distances
that preserved constant image heights of 32° of visual angle. In pilot
studies (Bingham & Gutjahr, 1990a, 1990b), we had observed par-
ticipants estimating their eye heights at the base of a tree and then
using this as a yardstick moved successively up the tree by eye. In
subsequent studies we mentioned to observers that tree height might
be estimated in this manner, but that we did not wish them to do
so. Rather, they were instructed to keep their eyes to the ground until
they were placed in the desired location for judging a given tree.
The tree would then be pointed out to them, and they were asked
to glance at the tree only long enough to take in its form and then
to produce an off-the-cuff estimate within about 2-3 s. Producing
estimates in such a brief interval did not allow observers to use the
more explicit measurement technique. Before making judgments,
observers were shown two lighting poles and were told that their
heights were 26 ft and 64 ft (7.91 m and 19.47 m, respectively). The
lighting poles were never in view together with any of the trees
judged.

We determined actual heights by sighting the tree top and base
and recording the angles of the sight lines to the horizontal, by
measuring the horizontal distance from the sighting location to the
tree and using the trigonometry described in Appendix B. Actual

_ heights ranged from 10 ft to 90 ft (3.05 m to 27.43 m).

Observers next returned to the laboratory and judged the heights
of trees in simulated tree images. Observers were given a packet in
which the images of the 56 trees were stapled together in a random
order. Two different random orderings were used. Observers were
instructed to flip through the images in order, to write estimates of
tree height in feet on another sheet of paper; they were told to treat
the images as pictures of actual trees, and to judge actual tree
heights. After they had completed the entire packet, they were al-
lowed to go back and look at any image they wished and to write
adjusted estimates next to their original estimates.

Observers were instructed to judge actual heights of both real and
simulated trees; in other words, “objective size” instructions rather
than “phenomenal size” or “projective size” instructions were used
(Epstein, 1967).

Results and Discussion

In light of the brief time given to observers, their estimates
of the heights of real trees were surprisingly accurate. We
regressed judged heights linearly on actual heights separately
for each observer. The mean 7 was .91 (SD = 0.06), the
mean slope was .97 (SD = 0.29), and the mean intercept was
~.75 (SD = 5.04). One observer produced an exceptionally

2 From these observations, it is clear that the two scaling laws
can only be a part of the full story. For instance, root geometries
that are related to above-ground architectures play an important
role in determining growth potential (Niklas, 1992). Furthermore,
the two laws, which act in parallel in our simulation, ultimately
interact. The biomass required for mechanical support of deployed
leaves determines a cost to be paid by means of the functioning of
those leaves (Ford, Avery, & Ford, 1990; Ford & Ford, 1990).
Nevertheless, the two laws, and especially the relation determined
by the need for stable self-supporting structures, apply invariantly
over variations associated with other constraints on growth in
trees.
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Figure 1. Experiment 1: Mean height estimates (with standard error bars) plotted against modeled
heights for each of seven architectures. Images of mid-range trees also are shown for each archi-
tecture. Proceeding from left to right and top to bottom (with standard errors in feet of the average
deviations of judged height from modeled height for each architecture): (2) Architecture H (1.20 ft),
(b) Architecture P (1.20 ft), (c) Architecture C (1.25 ft), (d) Architecture D (1.14 ft), (e) Architecture
L (1.32 ft), (f) Architecture M (1.65 ft), (g) Architecture V (1.21 ft), and (h) means for all seven
architectures plotted together, each with a least-squares best fit line. The stippled diagonal in each

plot is a line of slope 1, intercept 0.

high slope that was more than two SDs beyond the mean
slope. When his data were excluded, the mean slope was .93
(SD = 0.23); the mean intercept and r* were essentially un-
changed. When a regression was performed on the collected
data of 23 observers, the r* was .82. Mean judgments are
shown in Figure 3a.

Estimated heights of trees in simulated tree images in-
creased with increasing modeled tree height. However, the
tendency for increasing underestimation with increasing
height was much more pronounced when tree images were
used rather than real trees. Random errors both within and

between observers also were significantly greater. The
slope of a linear regression of judged height on modeled
heights was shallow (.37), with an intercept of 10.2 and an
72 of .23. When modeled height was regressed separately
on judgments for each observer, the mean r* was .50 (SD
= .18). Mean results were plotted by architecture in Figure
1. Observers estimated accurately the heights of smaller
trees, but larger trees were underestimated by about 50%.
Maximum mean judgments reached only about 50 ft. Re-
sults for the L architecture were particularly poor. Observ-
ers in a subsequent experiment judged this architecture to




PERCEIVING THE SIZE OF TREES

Figure 2. Images used in Experiment 1 of successively taller
trees over 10 orders of growth in Architecture C.

be relatively unnatural in appearance as did tree morpholo-
gists. We excluded the L architecture from further analysis
and investigation.

Next we examined the use of the simulated forms as in-
formation about tree height by regressing mean judgments on
H/D and on N, respectively. The relation between modeled
heights and H/D is shown in Figure 4a. The scatter in the
relation was a product of architectural variations. Because
the length of the branch or trunk was used in the Kira (1978)
scaling relation, the coefficient in the relation yielding tree
height varied depending on the orientation of the trunk. For
a central trunk tree with a vertical trunk, the tree height is the
same as trunk length. For angled trunks, tree height is less
than trunk length. The slope of the relation between H/D and
modeled heights was larger in central trunk trees and de-
creased as the main trunks angled out more. Steeper slopes
(=-3) were exhibited by architectures P, C, and V, and shal-
lower slopes (=~-2) were exhibited by architectures H, M,
and D. The overall relation was linear, as determined by the
Kira model.

In contrast, modeled height was expected to scale to the
square of the number of branches. Thus, the relation between
modeled height and the square root of the number of branches
should have been linear. A linear regression of modeled
height on N** was significant (#* = .90). However, as shown
in Figure 4b, some residual curvature remained. The second
order term in polynomial regressions was significant when
modeled heights were regressed on both N and N3, with
curvature concave down in the former case and concave up
in the latter. The implication was that the exponent in the
scaling of branch number on height was slightly less than 2.
When H/D and N~ were regressed simultaneously on mod-
eled heights, only the latter factor was significant (partial F
= 55.6, B = 0.82, p < .001). Of course, H/D and N cot-
related highly with one another (r* = .81).
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When mean judgments of simulated trees were regressed
on H/D, the r? of .93 was greater than for modeled heights
as shown in Figure 4c. The intercept was 56 ft. This is maxi-
mum tree height in the Kira (1978) model and was almost

" exactly half that produced by the model. Furthermore, ar-

chitectural variations in this relation were not reflected in the
judgments as shown in the comparison between Figures 4a
and 4c. This failure also produced the variation in slopes of
height judgments of different architectures shown in Figure
1h. That is, the relative tightness of the relation in Figure 4c
and the disparity of the relations in Figure 1h were both
reflections of a failure to discriminate architectural variations
in the scaling of H/D.

When mean judgments were regressed on N-, the  of
.87 was comparable to that for modeled heights. As shown
in Figure 4d, however, no residual curvature remained. A
polynomial regression also produced a straight line with a
nonsignificant second-order term, and a polynomial regres-
sion performed with N was strongly concave downwards
with a significant second-order term (p < .001). The im-
plication of this was that observers used square law scaling
even if the scaling exponent for the simulation was slightly
less than 2. When mean judgments were regressed simulta-
neously on H/D and N~, both were significant, and they
accounted for 95% of the variance (for H/D, partial F =
73.8, B = -0.64, p < .001, and for N5, partial F = 22.6,
B = 0.36, p < .001). These results implied that observers
relied somewhat more on H/D than on N. We had used
simulations in pilot studies that varied only the H/D ratio,
not branch number. An important result in that instance
was that some observers had refused to perform the task
and others had complained because the information was
contradictory. We inferred accordingly that that N re-
mained a relevant source of information despite heavier re-
liance on H/D.

We ordered the results of individual observers on the basis
of the r? values and selected the top half, with 2 = .50. A
multiple regression of mean judgments from this group on
H/D and N- accounted for 95% of the variance with | 3| =
.50 in both cases. The maximum height implied in the simple
rrggression of means on H/D was 70 ft, y = ~1.65x + 70,

= .90.

We measured the trunk diameters (above the root swell) of
the real trees judged outdoors and computed the correspond-
ing H/D ratios. The result of a regression of mean judgments
on H/D was as follows: y = — 1.59x + 98, r* = .45. When
the regression was performed using actual heights rather than
judged heights, the result was y = —1.55x + 99, = .40.

The simulation results indicated that the observers’ use of
the H/D ratio was not scaled differently for different archi-
tectures. As previously mentioned, the relation between H/D
and modeled height was different for different architectures.
The slopes were shallower for Architectures M, D, and H,
and steeper for the others. The intercepts, indicating maxi-
mum heights, also were significantly lower for Architectures
M, D, and H. This was appropriate for Architectures D and
M, in particular, because these architectures ceased growing
upward after a given branching order and thereafter contin-
ued to grow only outward.
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Figure 3. Mean height estimates (with standard error bars) of 16 real trees plotted against actual
heights for each of four viewing conditions (proceeding from left to right and top to bottom): (a)
trees with leaves (Experiment 1), (b) trees without leaves (Experiment 3), (c) trees viewed through
a tube, (d) trees viewed in photographs, and (e) means for all four viewing conditions plotted
together, each with a least-squares best fit second-order polynomial curve. See the text for expla-
nation of viewing conditions and description of the curves. The stippled diagonal in each plot is a

line of slope 1, intercept O.

Although Architecture M ceased growing upward, it did
continue to grow. In general, architectural variations deter-
mined how much of the increase in size with increasing
growth order was contributing to increases in height. In a
central trunk tree like Architecture P, increases in size en-
tirely corresponded to height increases. In the other archi-
tectures, as the main trunks angled outward more, size in-
creases contributed less to increases in height. This was
especially evident in Architecture M. This observation
raised the question of whether observers might be able to
judge size variations other than height in simulated trees.

Experiment 2: Judging the Size and Realism of
Simulated Trees

Trees (and other plants) grow in size by extending the
lengths of their branches. To the extent that the branches are
not oriented vertically, increases in size and in height will not
be equivalent. We investigated whether observers could es-
timate the sizes of simulated trees and whether the pattern of
size judgments would be different from that of height judg-
ments. Trees with trunks angled away from the vertical

R
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Figure 4. Modeled and mean judged heights for 46 simulated trees plotted against either the H/D
ratio or the square root of the number of branches, N3, each together with the results of a simple
linear regression. Proceeding from left to right and top to bottom: (a) modeled heights versus H/D,
(b) modeled heights versus N-5, (c) mean judged heights from Experiment 1 versus H/D, (d) mean
judged heights from Experiment 1 versus N°, (¢) mean judged heights from Experiment 3 versus
H/D, and (f) mean judged heights from Experiment 3 versus N*>.

should be judged to be of relatively greater size than height
compared with vertical central trunk trees.

Method

Participants. Twenty-six graduate or undergraduate students at
Indiana University participated in the study. Half were men and half
were women. All had normal or corrected-to-normal vision. Par-
ticipants were paid $4.25 an hour.

Procedure. The simulated tree images from Experiment 1 were
used to elicit estimates of tree size. Observers were asked to judge
the size or massiveness of trees on an arbitrary scale of 1 to 100;
they were reminded that trees grow outward as well as upward as

they increase in size and that they should take this into account. The
procedure used was the same as in Experiment 1.

When observers had completed their estimates of size, they were
asked to judge the trees in terms of the realism or naturalism of the
tree images. Observers judged realism on a scale of 0-8, where 8
was defined as “an actually existing tree” and 0 as “an impossible
tree.”

Results and Discussion

We first review results of realism judgments and then turn
to size estimates. The simulated tree images were judged to
be fairly realistic. The overall mean judgment was 4.5. When
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arepeated measures analysis of variance (ANOVA) was per-
formed on judgments with tree architecture as a factor, ar-
chitecture was significant, F(6, 144) = 12.8,p < .00l.Ina
Tukey honestly significant difference paired comparison test,
Architectures L and P were different (p < .05) from all other
types. As shown in Figure S, L was rated lower than the other
architectures, with an overall mean of 3.2, whereas P (at 5.5)
was rated higher.

Judgments also varied over growth orders within each ar-
chitecture. In most cases, the smallest initial orders of growth
were rated significantly below the remaining orders. We ex-
amined means for each order of growth computed across
architectures. The first-order mean was 2.8. This increased
linearly up to the fourth-order mean of 5.5. This value was
maintained out to the seventh order, where means dropped
again to values of 4.5 to 5 for orders up to 10. As shown in
Figure 5, this inverted U-shaped pattern of judgments was
obtained for Architectures H, C, and V, whereas means for
P, D, and M simply rose to a maximum value maintained
thereafter. In general, the simulations were judged to be not
entirely convincing for smaller trees and for some very large
trees as well. These results undoubtedly reflect the short-
comings in the model of the determinants of tree morphol-
ogy. (See also footnote 2.) Our simulations were examined
by Rolf Borchert and other tree morphologists, who agreed
that the L architecture appeared less realistic. In view of the
concurrence in the poor evaluations of the L architecture by
tree morphologists and our naive observers, we excluded the
L architecture from further analysis.

We wished to compare estimates of tree size with those of
tree height from Experiment 1. Because size and height judg-
ments were performed on different scales, they were reduced
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Figure 5. Mean realism judgments (with standard error bars) for
56 trees plotted left to right by increasing growth order within
architecture (open circles). The overall mean (with standard error
bar) for each architecture also is shown (filled circles). A tree
image for the architecture appears either above or below the cor-
responding judgments. Realism judged on a scale of 0 (an impos-
sible tree) to 8 (an actually existing tree).
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Figure 6. Mean height and size ranks for each of 46 trees plotted
left to right by increasing growth order within architectures. From
left to right, architectures are H, P, C, D, M, and V. Mean height
ranks = open circles; mean size ranks = filled circles.

to ranks within each observer across the 46 trees judged (ex-
cluding Architecture L). The mean ranks computed across
observers for each tree (arranged by growth order within each
architecture) are provided in Figure 6. Size and height judg-
ments were different for Architectures P and M, in particular.
M was judged to be greater in size than in height, whereas
P was judged smaller. This observation was confirmed when
we performed a mixed design randomization analysis with
judgment type and architecture as factors (Edgington, 1990;
Manly, 1991). Using 5,000 randomizations, we found that
architecture, (5, 230) = 24.9, p < .001, and the interaction,
F(5, 230) = 11.5, p < .001, were significant, and judgment
type was not (p > .1).

Estimates of size were different from those of height. What
aspect of tree form was used to make judgments about size?
In the instructions, we asked observers to take into account
the increasing length of trunks and branches, irrespective of
their orientation to the vertical. We computed the longest
length traversable within each simulated tree from trunk base
to branch tip. In a central trunk tree, this corresponded to the
height of the tree. In trees with trunks growing at an angle
to the vertical, this length was greater than the height of the
tree. We divided this length by H to map it into tree images.
(We mapped to the images by dividing by H rather than by
the simulated distance to the tree because we had held image
height constant. Thus, if the image height was set to 1, for
mathematical convenience, then the mapping of tree height,
H, to image height, H,, was H/H = 1 = H,.) L/H also serves
as an index of the outward growth of a tree, or its lateral
spread. If one considers L as the hypotenuse of a right triangle
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formed by the trunk of a tree, H is the height and the spread
is the base.

When we performed a multiple regression regressing mean
size judgments on N> and L/H, the result was significant (p
< .001) and accounted for 91% of the variance. The two
factors contributed equally to the regression as shown by
their respective beta weights (for N3, p < .001, 8 = 0.72,
partial F = 244.1, and for L/H, p < .001, B = 0.58, partial
F = 159.5). When the analysis was performed using H/D in
place of L/H, the  was only .76. When we performed the
analysis including both H/D and L/H, only the latter was
significant. (When this analysis was performed on height
judgments from Experiment 1, only H/D was significant with
B = -.76 as opposed to a 3 of —.04 for L/H.)

The implication of these results was that observers were
able to assess different scale properties of trees using dif-
ferent aspects of tree form preserved in their images. Ob-
servers did not base their estimates of tree size on the amount
of wood in a tree, but rather on the amount of lateral spread-
ing. We computed the amount of spread as the radius of the
area along the ground covered by tree branches. When this
was regressed on mean size judgments, the result was sig-
nificant, F(1, 44) = 297.6, p < .001, and accounted for 87%
of the variance. The two types of judgment, height and size,
thus seemed to have been literally of orthogonal properties,
one of vertical extent and the other of horizontal extent.

Experiment 3: Conferring a Metric on Ground
Texture Gradients

The obvious problem with the simulation results in Ex-
periment 1 was that, although the judgments were well or-
dered, the slopes were shallow and the random errors in es-
timates were substantial. Mean estimates did not exceed 50
ft, whereas modeled heights reached 90 ft. Why should this
have been so?

To address this problem, we compared and analyzed judg-
ments of real trees versus simulations. There were a number
of differences between the respective viewing conditions.
Viewing real trees involved a ground texture gradient as well
as binocular and wide-angle vision, upright posture, and (po-
tentially) optical transformations from either tree or observer
motion. In contrast, to investigate tree form as information,
we had isolated simulated tree forms in flat pictorial displays
that did not admit wide-angle vision or transformations from
either tree or observer motion or from binocular vision. Iso-
lation meant that tree forms did not appear in the context of
a ground texture gradient.

The potential significance of the ground texture gradient
was that observers could use the perceived size of the real
trees to scale the ground texture elements. The continuous
ground texture, in turn, might have provided a basis for
comparison among trees. As shown in Figures 1h and 4c,
observers of simulated trees were unable to discriminate
architectural differences in the relation between H/D and
tree height. Also, as indicated by random local reversals or
flattening in individual judgment curves, observers had
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difficulty in resolving successive increments in H/D or the
number of branches. Placing simulated trees appropriately
within a ground texture gradient would provide another di-
mension along which variations might be resolved.

More important, ground texture would provide a common
substrate in which the scale from the trees could be invested.
The scaling of this substrate could be fine tuned and adjusted
over subsequent exposures to a variety of trees. In this way,
for instance, observers might discriminate architectural
variations in the scaling relations. This possibility would
have more general relevance. Our generation of simulated
tree forms was strictly deterministic, but actual tree forms are
subject to stochastic variations. For instance, the coefficient
in the diameter to height relation can vary depending on
whether a tree is competing in a forest stand or is growing
in the open under less stressful conditions (McMahon, 1975;

“McMahon & Kronauer, 1976). It can also vary with the type

of wood (Wilson & Archer, 1979). Ultimately, architecture
can affect the coefficient in the relation determining branch
number (Fisher & Honda, 1979a, 1979b; Honda et al., 1981).
Additionally, growth varies with climate, including average
temperature and annual rainfall. Given these and other varia-
tions, detection of regularity over a number of trees appear-
ing in the context of a single visual environment would be
a prerequisite for stable, reliable, and more accurate percep-
tion of scale.

Scaling of Ground Texture Gradients

An optical texture gradient projected from the ground pro-
vides a relation between objects at different locations. How-
ever, the scaling on that relation is relative. Assuming that the
texture elements along the ground are invariant in size, the
optical texture elements can be used to scale the relative sizes
of objects in two closely related ways. Either object image
size can be compared with the image size of neighboring
texture elements, or the number of optical texture elements
occluded by different objects can be compared. In these
ways, the viewer can determine that one object is larger than
or farther away than another object, but the actual sizes of
objects cannot be determined without additional information.

A scale-specific quantity can be used to impart definite
scale to the field. Our question was whether trees might con-
fer a metric on ground texture gradients. If the sizes of trees
located at various places within the gradient can be deter-
mined, then the scale of the ground texture elements might
be established by comparison. The scale of other nonbio-
logical objects appearing within the gradient might be de-
termined in turn. We investigated whether the trees could be
used, in the context of a ground texture gradient, to scale the
size of objects with Platonic rather than biological forms. We
placed seven cylinders at various locations within a single
gradient. Cylinder size was varied to preserve image size.
Observers judged cylinder heights after having judged the
heights of trees appropriately placed at various locations
within the gradient.
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The Horizon Ratio Hypothesis

By including ground texture with a horizon, we may have
introduced information about scale other than the relative
scale of the gradient or the definite scale hypothetically pro-
vided by tree images. Optical information associated with the
observer’s eye height has been hypothesized as a source of
scaling (Gibson, 1979; Lee, 1980; Mark, 1987; Sedgwick,
1980; Warren, 1984; Warren & Whang, 1987). On a flat
ground plane, the image of the horizon has been shown to
intersect the images of all objects in the field of view at the
height of the point of observation. The ratio of the total image
height to the height of the point of intersection with the ho-
rizon in the image would determine the total actual height if
the eye height were known. Use of eye height with the ho-
rizon ratio is analogous to the use of the distance between the
two eyes as a source of scale in binocular convergence. The
distance between the viewer’s eyes has been hypothesized as
a source of scale because of its stability and invariance.

The eye height hypothesis is controversial, however, be-
cause eye height does not remain invariant as observers alter
either their posture or the heights of the surfaces on which
they rest (Bingham, 1988). Eye height varies continuously as
an observer adjusts from standing upright one minute, to
kneeling or sitting the next, or as an observer locomotes
along a trench, over a hill or up a set of stairs. Studies using
the eye level hypothesis assume that eye height is equal to
some constant proportion of the observer’s height. On the
basis of that assumptior, the perceived sizes and distances in
the surround would alter continuously with changes in eye
level. If this were true, perceived sizes would double when-
ever the observer’s eye height is reduced by 50% (by crouch-
ing, for example). As an alternative, the assumed eye level
value might be adjusted in these situations on the basis of yet
additional information about the current eye level. Unfor-
tunately, this strategy introduces a highly undesirable re-
gress. Nevertheless, there is evidence to support the horizon
ratio hypothesis (Carello, Grosofsky, Reichel, Solomon, &
Turvey, 1989; Mark, 1987; Rogers & Costall, 1983; Warren,
1984; Warren & Whang, 1987), and by including ground
texture gradients in our displays, we introduced the possi-
bility that observers might use the horizon ratio to scale their
judgments of height.

We controlled for the use of the horizon ratio by asking a
separate group of observers to judge the size of cylinders
appearing in the context of the ground texture gradient with-
out viewing or judging trees. If the horizon ratio was the
source of any observed improvements in the accuracy of
judgments made of simulated trees with ground texture gra-
dients, then similar results should have been obtained for
judgments of cylinders viewed either with or without trees.

A final inadequacy of the simulations used in Experiment
1 was that the tree images were produced using parallel pro-
jection for all sizes and distances, even though this was in-
appropriate for small trees that were closer to the viewer. As
a result, the images were all extremely flat and, for nearer
trees, distorted. For Experiment 3, we used polar projection
in addition to placing the trees in the context of a ground
texture gradient. Sample images of increasingly large trees
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in architecture C appear in Figure 7. (These should be com-
pared with the images in Figure 1.)

In these ways, we sought to make simulations more com-
parable to natural viewing conditions. However, we also ma-
nipulated conditions to make the viewing of real trees more
comparable to the simulations. Information derived from
wide-angle and binocular vision was eliminated by having
observers view trees through a tube with an aperture of visual
angle (=~40°) slightly larger than that of the trees. Although
a proportion of the ground extending from the observer to the
tree was occluded, some ground texture immediately around
a given tree remained visible. Finally, we asked observers to
judge the height of the real trees in photographs taken at the
original viewing locations from about the same visual angle
as that provided by the tube.

Method

Participants. Twenty students at Indiana University partici-
pated in judging simulated trees with ground texture gradients. In

exchange for their participation, they received credit in an intro- -

ductory psychology course. Sixteen students participated in judging
real trees observed through a tube, and 16 students participated in
judging photographs of real trees; they were paid at $4.25 an hour.
In all cases, half of the participants were men and half were women.
All had normal or corrected-to-normal vision.
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Figure 7. Images used in Experiment 3 of successively taller
trees over 10 orders of growth in Architecture C.
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Display generation. Simulated tree images were generated in
the same way as for Experiment 1, with the following exceptions.
Only six different architectures were used, excluding Architecture
L. All tree silhouettes were placed in the same ground texture gra-
dient. Ground texture elements resembled crabgrass. Distances be-
tween the trees preserved tree image height at 10° visual angle for
a point of observation located 1.7 m. above the ground. Tree
branches and trunks of circular cross-section were generated in
three-dimensional space, enabling us to use polar projection to im-
ages. Seven cylinders of heights ranging from 1 ft to 10 ft (0.3 m
to 3.0 m) were placed at various locations along the ground such
that image size was preserved. As illustrated in Figure 7, the layout
of both texture elements and cylinders was the same in all images,
whereas trees were placed at various distances along the midline of
the image.

A 35-mm camera with a 50-mm lens was used to take black-
and-white photographs of the 16 trees on the campus. The trees were
photographed without leaves. Portions of buildings and other trees
and shrubs appeared in the background of all photographs. Pho-
tographing was done on a cloudy day to minimize shadows and
maximize contrast. The photographs were taken in the locations
used in all experiments that involved real trees. The viewing angle
was just slightly larger than the image height of the trees. High-

contrast 7 in. X 5in. (17.8 cm X 12.7 cm) glossy prints were used. .

Procedure. 'The procedure used to estimate the size of the simu-
lations was identical to that used in Experiment 1, with a single
exception. As before, observers first judged the heights of 16 real
trees on the Indiana University campus and then judged the height
of simulated trees. After having judged the 46 simulated tree im-
ages, they were asked to judge the heights of the cylinders that had
appeared in all of the tree images. Observers were allowed to ex-
amine the packet of tree images a second time, examining the cyl-
inders in the context of the different trees. They were shown an
image of the cylinders (and texture gradient without trees) in which
the cylinders were randomly labeled 1 to 7, and used these labels
to refer to cylinders when writing their estimates on a protocol sheet.

The procedure used to estimate the sizes of 16 real trees as seen
through the tube was very similar to that described in Experiment
1 for judging real trees. Observers were instructed to keep their eyes
to the ground until they were positioned for judging a tree and the
tree was pointed out to them. In this experiment, however, they were
asked to close their nondominant eye and to hold a 3-in. (17.62-cm)
black cardboard tube up to their other eye before raising their head
to view a given tree. Before raising their heads, the observers also
closed the eye used with the tube and kept it closed until the tube
was directed at the tree. The experimenter assisted them in orienting
correctly to the tree. They were asked to give their estimates of tree
sizes within 2-3 s of opening their eye. These observers did not
subsequently judge simulated trees.

The procedure for judgments of photographs and of simulated
cylinders without trees were the same as those for judging simulated
trees, with the following exceptions. Observers first judged a set of
10 real trees (different from the 16 trees to be judged in photos), then
returned to the laboratory and judged the sizes of 16 real trees in
photographs arranged in the same random orders used previously
with other observers who had viewed the trees outdoors. After ob-
servers had completed these judgments, they were asked to judge
the heights of simulated cylinders. They were shown the image of
cylinders and texture gradient without trees. Aside from the inability
to flip through simulated tree images, the procedure was the same
as used for cylinders with trees.

Observers in all three conditions (binocular viewing, through-
the-tube, and photographs) judged the same 16 trees as were used
in Experiment 1.
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Results and Discussion

Both systematic and random errors were lower for simu-
lated trees than they had been in Experiment 1. A ceiling on
maximum judged heights was still apparent, although it was
slightly higher than that obtained in Experiment 1. In judg-
ments of real trees, systematic and random errors increased
with increasingly restrictive viewing. Maximum judged
heights decreased when binocular and wide-angle vision
were eliminated. Finally, the number of systematic and ran-
dom errors was substantially larger in estimates of cylinders
judged alone than for those judged in the presence of trees.

Judgments of simulated trees. When mean judged
heights were regressed linearly on modeled heights, both the
slope (0.50) and the 1 (.93) were greater than those in Ex-
periment 1, whereas the intercept (11.4) was essentially the
same. The r* obtained when this regression was performed
on all individual judgments was .40. In regressions per-
formed separately for each observer, the mean 72 was .75 (SD
=.10). These r*s also were greater than in Experiment 1. We
performed an ANOVA comparing the slopes for individual
observers in Experiments 1 and 3. The result was significant,
F(1, 42) = 4.06, p < .05. A similar ANOVA on individual
r’s was also significant, F(1, 42) = 30.7, p < .001. When
we regressed judged heights from Experiments 1 and 3 on
modeled height with vectors coding for experiment and the
interaction, the result was significant, F (3, 2020) = 346.9,
p <.001, 7% = .34. Modeled height was significant, 8 = 0.55,
partial F = 934.2, p < .001. Although experiment was not
significant (8 = 0.05), the interaction was significant (partial
F=12.,8=0.15, p <.001), indicating that the slopes were
different, but not the intercepts. These analyses show that
inclusion of the ground texture gradient produced less ran-
dom error and an increase in mean judgments of larger trees.
Overall, as predicted, observers were better able to resolve
changes in tree form and, therefore, changes in size.

However, as shown in Figure 8, the result of a linear fit
was somewhat misleading. Mean judgments were linear
and close to actual values for modeled heights up to about
40 ft (12.19 m), at which point judgment curves veered off
as if approaching a ceiling. We performed separate regres-
sions using mean judgments for each architecture within
the linear range. Table 1 shows that for four of the six ar-
chitectures, the r’s were all .98 or better and the slopes
were all above .7 and intercepts less than 5. Nevertheless,
a second-order polynomial regression performed using all
mean judgments was significant, » = 94, F(2, 43) =
352.8, p < .001, and the second-order term was significant
(p < .01). Implicit in this polynomial fit was a maximum
value at ceiling. When we took the derivative of the re-
gression equation and set it equal to 0 to find the locus of
the maximum, the resulting value was 126.7 ft (38.62 m).
This was only 5 ft (1.52 m) less than the maximum height
used in our model. However, when we substituted this
back into the polynomial equation to find the predicted
mean judgment, the result was only 55 ft (16.76 m), re-
flecting the compression evident in Figure 8.

When we performed polynomial fits separately for each
architecture, the locus of the maximum was different in each
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Figure 8. Experiment 3: Mean height estimates (with standard error bars) plotted against modeled
heights for each of six architectures. Images of mid-range trees also are shown for each architecture.
Proceeding from left to right and top to bottom (with standard errors in feet of the average deviations
of judged height from modeled height for each architecture): (a) Architecture H (1.11 ft); (b)
Architecture P (1.24 ft); (c) Architecture C (1.31 ft); (d) Architecture D (1.13 ft); () Architecture
M (1.65 ft); (f) Architecture V (1.21 ft); (g) means for all six architectures plotted together, each with
a least-squares best fit second-order polynomial curve. The stippled diagonal in each plot is a line

of slope 1, intercept 0.

case. This accorded with our intuitions in generating different
simulated maximum heights for the different architectures.
The maxima (and corresponding predicted mean judgments)
were as follows: for H, 50.1 ft (37.1 ft); for P, 113.1 ft (60.8
ft); for C, 137.8 ft (60.7 ft); for D, 26.5 ft (25.7 ft); for M,
52.4 ft (37.1 ft); and for V, 165.8 ft (63.7 ft).> The maxima
for Architectures D and M occurred at almost exactly the
values at which these trees stopped growing upward and only
continued growing outward. The difference between the
modeled heights at the maxima and the predicted judgments
reflected the compression in judgments. These points also

were fitted well by a second-order polynomial (#* = .99, p
< .001) with a significant second-order term (p < .02) and
a maximum occurring at 67.6 ft.

We turned next to an analysis of the hypothesized sources
of information. The results of regressions of mean judgments

3 The metric equivalents of these judgments are as follows: for
H, 15.27 m (11.3 m); for P, 34.5 m (18.5 m); for C, 420 m

(18.5 m); for D, 8.08 m (7.8 m), for M, 16.0 m (11.3 m); and for
V, 50.5 m (19.4 m).
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Table 1
Linear Regressions on Mean Judgments by Architecture
for Modeled Heights Below 40’

Architecture Slope Intercept P
H 1.06 -1.6 98
P .70 44 99
C .54 8.7 .98
D 91 35 99
M 82 2.8 99
\" 58 9.6 .99

on H/D and N- are shown in Figures 4¢ and 4f. The maxi-
mum height of 64 ft indicated by the intercept of the relation
between H/D and judged height was 10 ft greater than that
in Experiment 1, but still considerably below that for mod-
eled heights as shown in Figure 4a. This value was close to
that derived through the polynomial fits given above. The
scaling of judgments with the number of branches reflected
a surface law, as in Experiment 1. When mean judgments
were regressed simultaneously on H/D and N, the result was
significant, # = .84, p < .001. Only N* was significant,
partial F = 34.7, 8 = 0.81, p < .001. The beta for H/D was
—0.11. This reproduced the pattern that resulted when this
regression was performed on modeled heights, in which the
betas were 0.84 and —0.12, respectively.

The relation between H/D and modeled height exhibited
different slopes and intercepts for different architectures de-
pending largely on the orientation of the trunks with respect
to the vertical. In Experiment 1, observers were unable to
discriminate these architectural differences, as indicated in
Figure 4c. In contrast, observers in Experiment 3 were able
to detect these differences, as indicated in Figure 4e. The
differences found in Experiment 3 mirrored those for mod-
eled heights indicated in Figure 4a. When slopes for each
architecture of the relation between H/D and mean judgments
from Experiment 3 were regressed on slopes derived for each
architecture using modeled heights, the result was significant
(r* = .85, p < .03), with a slope of .6. A similar result was
obtained using intercepts. In the same comparisons using
data from Experiment 1, the results were not signiﬁcarit and
the slope (of the relation between slopes) was flat. Thus, the
scaling relation between the H/D ratio and judged heights
was different for different architectures in Experiment 3, but
not in Experiment 1. In Experiment 1, the failure to dis-
criminate architectural differences was also reflected in sys-
tematic errors in judged heights. This is shown in Figure 1h
by a diversity of slopes for the architectures. In Experiment
3, the successful discrimination of architectural differences
was reflected in parallel judgments of height for different
architectures, as shown in Figure 8g. The implication of these
results was that the presence of the ground texture gradient
allowed observers to discern architectural differences in the
scaling information and to make more accurate estimates of
height. _

We had expected that the ground texture gradient would
allow observers to better resolve the scaling information ob-
tained in apprehension of individual trees. In each instance,
the scaling information could be mapped to the texture gra-
dient with a gradual tuning of the gradient over successive

trees. To investigate this possibility further, we examined the
pattern over presentation order of mean percentage of error
in the initial set of judgments. We computed the mean per-
centage of error for each trial across observers, including
observers who judged different presentation orders. For in-
stance, all errors for the first tree presented were averaged
even though this involved trees of different size. When we
examined a scatterplot of mean percentage of error against
order of presentation, a decreasing trend was apparent. A
second-order polynomial regression was significant, > =
.30, F(2, 43) = 9.07, p < .001, with a significant second-
order term (p < .05). The equation described mean per-
centage of error as starting at 37% at Trial 1 and descending
to 13% over 35 trials. That is, the mean percentage of error
dropped to 65% of its initial value. The majority of the im-
provement occurred in early trials. Two thirds of the drop had
occurred by Trial 15. In contrast, a similar scatterplot using
the data from Experiment 1 exhibited no such trend. A linear
regression was not significant (# = .05), and the slope was
flat. These results implied that the presence of the texture
gradient enabled observers to improve the accuracy of their
estimates over trials.

Size estimates of real trees. 'We next compared simula-
tion results to size estimates of real trees. The results indi-
cated that the compression exhibited by judgments of simu-
lated trees was produced by the viewing conditions, that is,
monocular viewing without wide-angle vision.

There were leaves on the 16 trees at the time that they were
judged in Experiment 1. This was not true of Experiment 3.
However, as shown in Figures 3a and 3b, the results were
essentially the same. When height estimates of trees without
leaves were regressed linearly on actual heights, the slope
was .94, the intercept was —1.13, and the 72 was .80, as com-
pared to .93, .59, and .82, respectively, with leaves. The mean
r? for separate regressions performed on the data for each
observer was .89 (SD = .04) without leaves as compared
with .91 (SD = .06) with leaves. As shown in Table 2, when
these analyses were performed on the data for trees seen
through a tube and in photographs, the slopes and r*s dropped
progressively, and the intercepts increased to values that
were comparable to those obtained in_judgments of simu-
lations. We performed multiple regressions on the data from
these successive viewing conditions (binocular, through-the-
tube, and photographs), taking two at a time, using modeled
height and vectors coding for viewing condition and the in-
teraction. In each instance, the slope and intercept differences
were significant.

A drop in the ceiling for maximum judged heights is ap-
parent in Figure 3. Second-order polynomial fits were sig-

Table 2
Linear Regressions for Judgments of Real Trees in
Four Viewing Conditions

Viewing condition ~ Slope Intercept r* m SD

With leaves 93 .59 82 091 0.06
Without leaves .94 -1.13 .80 0.839 0.04
Through the tube 5 3.72 69 0.82 0.10
Photographs .59 8.37 62 072 007
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nificant (p < .001) in all cases. However, the second-order
term was not significant for trees without leaves. The pre-
dicted mean judgments at the maxima were 105 ft (32 m) for
trees with leaves, 61 ft (18.59 m) for trees viewed through
a tube, and 51 ft (15.54 m) for photographs. When mean
height judgments for real trees were regressed on measured
H/D ratios, the intercepts indicating maximum tree heights
dropped from 93 ft (28.35 m) for trees without leaves, to 87
ft (26.52 m) for through-the-tube viewing, to 76 ft (23.16 m)
for photographs.

Judgments of cylinders. As shown in Figures 9a and 9b,
both the systematic and random errors were much greater in
judgments of cylinder heights performed without seeing trees
than with trees. In both cases, the judgments of individual
observers were well ordered. The mean individual r?s were
comparable in both cases, .78 (SD = .29) without trees and
.81 (SD = .23) with trees. However, the variability in slopes
and intercepts was much greater in judgments made without
trees. The standard deviation for mean individual slopes was
1.15 without trees as compared with .54 with trees. For mean
intercepts, the standard deviation was 7.50 without trees
compared with 1.96 with trees. When judgments made with-
out trees were regressed linearly on modeled heights, the
result was significant (p < .003, slope = 0.92, intercept =
3.25), but the 7* was only .08. When the regression was
performed using judgments made with trees, the result was
also significant (p < .001, slope = 0.68, intercept = 2.40),
with an ? of .35.

Presuming that observers were, on average, able to scale
the gradient accurately on the basis of tree estimates, we
would have expected the slope of the cylinder judgments to
be near 1 with a 0 intercept. The slope of .68 was somewhat
low. Slope less than 1 was produced by accurate mean es-
timates of the taller cylinders coupled with overestimation of
the shortest cylinders. The smallest cylinder was 1£t (.30 m)
in height. Observers expressed their judgments in feet. The
lowest estimates were of 1 ft, and these occurred only for the
smallest cylinder. We inferred from this that the low slope
was the result of a floor effect.

We noted that a couple of the observers in the condition
without trees were surprisingly accurate as compared with
other participants. These observers produced slopes and in-
tercepts near 1 (as well as an 7 of .99). We also noted that
whereas most of the observers expressed some perplexity and
dissatisfaction with the task, these observers did not. We
asked these observers how they had performed the task. They
explained that they had used the scale determined by the
ground texture elements, which they had assumed to be over-
grown grass. When interviewed, other observers said they
had just guessed and that they had not identified the ground
texture as grass. Although they were of the appropriate scale,
the simulated ground texture elements were only vaguely
intended to be like grass. Nevertheless, the results without
trees were perhaps somewhat better than they might have
been had we used an entirely arbitrary or unnatural ground
texture element, for instance, dots or a grid.

Whether or not trees were present, estimates of cylinder
sizes were well ordered, as would be expected given the
relative scaling allowed by ground texture gradients. How-
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Figure 9. Mean height estimates of cylinders (with standard er-
ror bars) plotted against modeled heights. Top: Cylinders viewed
without simulated trees. Bottom: Cylinders viewed in presence of
simulated trees. The stippled diagonal in each plot is a line of slope
1, intercept 0.

ever, judgments of cylinders alone were subject to consid-
erable random variability, whereas judgments of images that
included trees were well constrained and much more accu-
rate. The results indicated that apprehension of the trees en-
abled observers to scale both the ground texture gradient and
other nonbiological objects appearing in the context of that
gradient and that the inclusion of a ground texture gradient
with a horizon did not lead to the use of the horizon ratio with
an assumed eye height.

e
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Experiment 4: Controlling for Practice and the
Horizon Ratio

In Experiment 3, observers who judged cylinders without
seeing the simulated trees only saw the texture gradient and
cylinders once, whereas observers who judged cylinders with
trees saw the gradient and cylinders together with 46 dif-
ferent trees. Perhaps repeated viewing yielded reductions in
random error in cylinder judgments as a practice effect. To
control for this possibility we ran another experiment in
which observers judged the cylinders after having judged the
heights of 52 poles that appeared in silhouette on the texture
gradient with the cylinders. This also provided us with an-
other test of the potential use of the horizon ratio to judge
heights. The poles appeared in images exactly as had the
trees. The image heights were the same, and the actual
heights spanned the same range as the trees. Four different
pole thicknesses were used at each of 13 different heights
with thicknesses equal to between .02 and .08 of actual
height. The cylinders and texture gradient were the same as
shown in Figure 7.

Method

Participants. Fifteen students (7 men and 8 women) at Indiana
University participated in the study. All had normal or corrected-
to-normal vision. Participants were paid at $4.25 an hour.

Procedure. Participants judged the heights of the poles and
then the heights of the cylinders. The instructions and procedures
were the same as used with the tree simulations in Experiment 3.

Results and Discussion

Judgments of pole heights were fairly well ordered, but the
variability was extreme. Judgments were regressed linearly
on actual pole heights separately for each observer. The mean
r* was .49 (SD = 0.33), the mean slope was .38 (SD = 0.47),
and the mean intercept was 27.9 (SD = 63.5). The most
striking variability was in intercepts. This reflected the fact
that different observers expressed judgments in units of
inches or yards as well as feet. (Although we had suggested
that estimates be expressed in feet, we had always allowed
observers to use other units as long as they were clearly
indicated, to allow observers accustomed to SI units to ex-
press judgments in meters. This was the first time observers
had taken advantage of this opportunity to use yards or
inches.) When a regression was performed on the collected
data, the result was significant, F(1, 778) = 14.0, p < .001,
but the 2 was only .02. As shown in Figure 10a, mean judg-
ments overestimated shorter heights and underestimated
taller heights. Given the size of the objects, however, stand-
ard error bars were more representative of performance (cf.
Figure 8b).

Results of trials involving the use of cylinders were similar
to those using poles. The mean r* was .48 (SD = .42), the
mean slope was .61 (SD = 1.17), and the mean intercept was
4.8 (SD = 14.6). These results were comparable to those
previously obtained for size estimates of cylinders without
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Figure 10. Mean height judgments (with standard error bars)
from Experiment 4 plotted against modeled heights. Top: poles.
Bottom: cylinders. The stippled diagonal in each plot is a line of
slope 1, intercept 0.

trees, although the current results were even more variable.
The result of a linear regression of judgments on actual
heights was not significant, F(1, 96) = 2.0, p > .05, with an
r? at .02 as low as that for the pole judgments. As shown in
Figure 10b, the standard error bars overwhelmed the means.
This figure should be compared with Figures 9a and 9b.
These results showed that practice had nothing to do with
the more accurate assessment of cylinder size that was ob-
tained when observers could compare the cylinders to tree
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images. Furthermore, the addition of a horizon with the tex-
ture gradient used in Experiment 3 does not account for the
resulting improvements in performance. The only source of
definite scaling information in the simulations of Experiment
3 was the tree forms.

General Discussion

We have demonstrated that the forms of biological objects
can provide visual information for the scale of the surround-
ings. Texture gradients, by themselves, provide information
only about the relative sizes of objects. We found that trees
placed within a gradient conferred a metric on the field. This
enabled observers to estimate the size of nonbiological ob-
jects appearing in the context of the same ground texture
gradient.

Use of form as information about scale is parsimonious
because it reduces the scaling problem to an identification
problem (Bingham, 1987a, 1988). In visual perception, the
scaling problem is created by the fact that metrics associated
with spatial (and mass-related) dimensions are lost in the
mapping from objects and events into optical pattern (e.g.,
Turvey, 1977). Only temporal metrics are preserved. For in-
stance, the period of an optical transformation can be meas-
ured in seconds, but optical velocities cannot be measured in
meters per second. Nevertheless, many qualitative properties
of objects and events are preserved in the mapping to optical
pattern (e.g., Bingham, 1987a, in press-a; Bingham, Rosen-
blum, & Schmidt, 1991; Koenderink, 1986, 1990; Koender-
ink & van Doorn, 1978; Todd & Reichel, 1989).4 The scaling
required for these qualitative properties is somewhere be-
tween ordinal and interval, but not ratio or absolute. Nev-
ertheless, if the size of objects and events determines their
forms or qualitative properties, then weaker types of scaling
on mappings to optical properties may suffice to provide
information about size. Given the nature of these mappings,
this type of solution may be the only viable alternative.

We note also that this solution becomes particularly pow-
erful when extended to events and kinematic form. Kine-
matic form includes the time dimension and can be described
in terms of the forms of trajectories in either phase space or
event space (Bingham, 1987a, 1987b, 1988, in press-a). The
analysis is strictly analogous to that described in this article
because the forms of trajectories are determined by the scale
of the underlying spatial and physical dimensions (Bingham,
in press-a; Muchisky & Bingham, 1992; Bingham et al.,
1991). The possibility is especially significant because it ex-
tends this solution beyond the biological domain to events in
general. For instance, Muchisky and Bingham (1992) have
obtained results indicating that the forms of various inani-
mate events that involve free fall map into optical forms that
can be used to determine the sizes of objects in the events.
Thus, when properly extended, the solution to the scaling
problem developed in this article may prove fruitful.

Relative Versus “Absolute” or Definite Scaling

Relative scale, as determined by a texture gradient, for
example, allows an observer to determine that one object is
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larger or farther away than another, but not that one is 6 ft
(1.83 m) tall at a distance of 20 ft (6.09 m) and the other 3
ft (.91 m) tall at a distance of 10 ft (3.05 m). Such deter-
minations require “absolute” scaling. Some 25 years ago, the
possibility that familiar size enabled estimation of absolute
size became controversial. Ultimately, as reviewed in Epstein
(1967), the controversy was resolved in favor of absolute size
perception by means of familiar size, but the resolution en-
tailed refinements in method.

The difficulty has been described succinctly by Gogel
(1977, pp. 140-141) using the following example. To test the
apprehension of distance, observers are shown a luminous
square placed in a dark field at one of two distances, either
3 m or 6 m. Half of the observers judge the 6-m distance first
and the remaining half judge the 3-m distance first. If ob-
servers are unable to apprehend the “absolute” distance
(and/or size) of the square, then on the first trial, the two
groups of observers will judge the two distances as the same
on average, for instance, as 2 m. Next, the use of relative
scaling information means that the judgments on the second
trial will be determined by the relative change in projected
size of the square. A first group that first judged the square
at 6 m as being 2 m away, will now judge the square at 3 m
as being 1 m away. Halving the distance should bring size
estimates down by 50%. The second group, having judged
the 3 m distance as being 2 m away, should now judge the
6 m distance as being 4 m away. The relative proportions in
each instance should be determined by the relative changes
in projected size. When the judgments of the two groups are
averaged, the resulting means are 1.5 m and 3 m. Gogel
suggested that these means might be interpreted erroneously
as evidence for the perception of absolute distance based on
the absolute size of the retinal image, when in fact only rela-
tive scaling was involved.

We used the data from Experiment 3 to investigate the
possibility that mean estimates of tree height might have been
derived as envisioned by Gogel (1977). We had used three
different presentation orders for each of three different
groups of observers. The first trial in each involved a dif-
ferent size tree of Architecture H. The small, medium, and
large sizes spanned nearly the full range of modeled heights
for this architecture. We performed a simple linear regression
on this first trial data, regressing judged heights on modeled
heights. The result was significant, F(1, 18) = 5.20, p <
.03, » = .23, with a slope of .41 and an intercept of 9.7 ft.
On average, different sizes were not judged as being equal.
On the contrary, successively larger trees were judged as
larger with the mean judgment of the smallest tree being
rather precise. Given the finding that mean judgment accu-
racy continuously improved over the first 15 trials of Ex-
periment 3 by virtue of the texture gradient, we judged this

4 Factors that determine biological forms have been used previ-
ously in work on visual recognition, but with an emphasis on
symmetric shapes (Blum, 1973; Marr, 1982). For instance, Marr
(1982) used the symmetry of cylindrical or conical limb segments.
So did we. However, following Shaw et al. (1982), our emphasis
has been on asymmetric distortions in biological forms that are
produced to preserve physical or functional symmetry.
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result to be consistent with the general results of Experi-
ment 3. When we repeated this analysis for each of the
next 3 trials, the results were significant and comparable in
all cases, as shown in Figure 11a. We performed a multiple
regression on the data of the first 4 trials, regressing judg-
ments on modeled heights and vectors coding for trial and
the interaction. The overall result was significant, F(3, 76)
= 12.5, p < .00}, r» = .33, but only the modeled height
factor was significant (partial F = 34.8, p < .001). The
slope was 0.42 with an intercept of 9.5. The result was the
same when we performed the regression with observer
group coded instead of trial.

As a second control for this potential problem, we went
into the classrooms of two large sections of an introductory
psychology course at Indiana University and gave each stu-
dent 1 of the 46 tree images from Experiment 3 and asked
for an estimate of tree height. Between 7 and 9 students
(predominantly female) judged each tree image. Under these
conditions, we expected the results to be extremely noisy, and
in fact they were. However, as shown in Figure 11b, they
were comparable on average to the results for the initial trials
in Experiment 3.

Do our results provide evidence that observers are able to
perceive the absolute size of trees? The difficulty is that ab-
solute sounds so inflexible, as though requiring extreme pre-
cision. However, the determination of the accuracy of a mea-
surement is always a function of the way that the information
is to be used. The fit required for a wine bottle cork is not
very tight if the goal is simply to prevent air exchange and
very tight if the goal is to prevent it from being opened by
a 2 year old. Although a tolerance that is used to determine
accuracy is relative to a functional context, it would not be
appropriate to suggest that the scaling of a measurement is,
therefore, relative.

Relative scaling is actually the more inflexible or defi-
nite notion. If an observer has access only to information
strictly about relative scaling but is required to provide
metric estimates, then those estimates can vary in principle
anywhere from millimeters to light years. The gridlike tex-
ture gradient used to illustrate so many textbooks could
portray equally well a patchwork of farm fields stretching
for miles as seen from a plane, the tiles on a kitchen floor
extending for a few feet, or a patchwork of connections on
a microchip. As soon as observers are able to provide esti-
mates that are consistently within a marginal tolerance of
actual values, the presumption must be that there is infor-
mation available that is more definite than merely relative
scaling. Perhaps absolute is not the best term to use be-
cause it does not seem to leave room for the tolerance re-
quired for and noise entailed by actual measurement sys-
tems. Accordingly, we prefer to refer to definite scaling,
that is, scaling information that sets the limits on the pos-
sible scale. Whether those limits are tight enough to pro-
vide sufficiently accurate information is a matter of the in-
tended use for that information. Our evidence does show
that tree forms provide definite scaling information that al-
lows determination of the size of trees and surrounding
objects.
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Figure 11. Mean height judgments plotied against modeled
heights. Top: Mean judgments from the first four trials of Experi-
ment 3. For each trial, the three means represent the judgments of
three groups of observers, each judging a different tree. Trial 1:
filled circles. Trial 2; filled squares. Trial 3: open triangles. Trial 4:
open diamonds. Bottom: Mean judgments for 46 trees in six ar-
chitectures with each tree judged by a different group of observers.
The result of a simple linear regression is also shown. The stippled
diagonal in each plot is a line of slope 1, intercept 0.

Complexity of Biological Forms
Inalienably integrated properties. We found that differ-

ent aspects of a biological form could be detected and used
to judge different scale properties of biological objects. Ob-
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servers used different aspects of tree form to judge either the
height or the amount of lateral spread of trees. The properties
of form used in the two instances could not be isolated mean-
ingfully from one another in displays. In principle, the stron-
gest correlates of the spread estimates could be captured in
stick figure trees, but these would no longer look like actual
trees and could as easily be identified perhaps as cracks in
pavement. Isolating branch number and branching angles
would be similar to manipulating trunk diameter without
changing the number of branches. We found that observers
balked at judging the latter type of display. Number of
branches and relative diameter covary in nature as function-
ally interactive components of tree growth (E. D. Ford et al.,
1990; R. Ford & Ford, 1990). To decouple them would pro-
vide contradictory information. Such displays simulta-
neously specify growth and lack of growth.

The fact that estimates of tree height and spread covaried
principally with alternative aspects of tree form did not mean
that the remaining aspects were ignored or irrelevant. We
accounted for 91% of the variance in size judgments using
L/H and N3, but the same regression performed with L/H and
H/D accounted for 85%. The difference between height and
spread judgments was not that H/D was irrelevant for spread
judgments, but that L/H along with the number of branches
became especially relevant. (L/H only accounted for 17%
and 5% of the variance in H/D and N3, respectively, in simple
regressions.) Judgments of lateral spread placed a heavier
emphasis on architectural variations.

Biological forms are complex in exhibiting properties that
are inherently integrated and thus inseparable in displays
although distinguishable by observers of those displays. The
methodological moral is that isolating perceptible properties
in displays may often be inappropriate.

Resolution, memory, and the continuous field. The com-
plexity of tree forms makes the resolution of form changes
difficult. Detecting changes in form would place a heavy load
on memory when the images are presented one at a time. In
natural environs, these forms populate a structured surround
so that scaling information provided by a given tree can be
conferred on the background structure and subsequently
tuned with additional information. The advantage is that the
continuous background serves effectively in lieu of (or at
least in aid of) memory. Removal of the structured back-
ground may prevent perceivers from making effective use of
such complex biological forms.

In Experiment 1, important factors present in natural
viewing conditions clearly were missing. Both systematic
and random errors were substantially greater for simulated
than for real trees. In particular, observers failed to dis-
criminate scaling variations generated by architectural dif-
ferences. From this, we inferred that the presence of a
ground texture gradient might be important in providing a
single environmental field on which scaling might be con-
ferred and through which the scaling might be tuned.
When a ground texture gradient was used in Experiment 3,
the accuracy of the estimates improved, including success-
ful discrimination of architectural scaling variations. Fur-
thermore, the pattern of errors over successive trials indi-
cated that observers fine-tuned and improved their
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estimates over the first 15 or so trials, during which sys-
tematic errors dropped by nearly 50%. This trend had been
absent without the ground texture gradient.

The potential difficulty in including more structure was the
possible introduction of confounds. Specifically, with the in-
clusion of ground texture and a horizon, observers might
have used the horizon ratio to achieve the observed improve-
ments in estimates. However, the use of the horizon ratio was
not supported by resuits from judgments of nonbiological
objects. In conditions where the horizon ratio was available
but information from biological forms was not, judgments of
poles and cylinders were highly variable.

The ineffectiveness of the horizon ratio also has been dem-
onstrated by varying the eye height used to generate simu-
lations otherwise like those used in Experiment 3. Bingham
(in press-b) used an eye height of 4 m as opposed to 1.7 m.
Use of the horizon ratio to judge height requires the use of
an assumed eye height value, presumably that of the standing
observer. Using the horizon ratio to judge tree height in a
simulation projected to more than double the eye height -
should have cut judgment slopes by at least 50%. To the
contrary, the slopes of judgments increased slightly. Clearly,
thé trees, not the ground texture pattern, were the ultimate
source of size information, although the presence of the
ground texture did enable observers to use that information
more effectively.

Compression in Judgments as a Product of Viewing
Conditions

Mean height judgments in Experiment 3 continued to ex-
hibit a ceiling at about 60 ft (18.29 m). Although we do not
fully understand the source of this ceiling, the evidence from
judgments of real trees indicates that the pictorial nature of
the simulations was responsible. Mean estimates of the tallest
trees dropped from near 80 ft (24.38 m) to about 60 ft (18.29
m) when binocular and wide angle vision were eliminated
(through-the-tube viewing). Optical flow containing motion
parallax was also kept to a minimum by requiring observers
to stand still and to provide their estimates within seconds.
Maximum judged heights dropped only another 4 or 5 feet
when estimates were made from photographs (although the
r? continued to drop substantially). Whether the lack of wide-
angle vision or the lack of the transformations associated
with binocular vision and motion parallax were responsible
is not clear from the current results. Nevertheless, judgments
of simulations were comparable to judgments of real trees
obtained under the most similar viewing conditions. Perhaps
adding stereopsis or optical flow with motion parallax to the
simulations would raise the ceiling. On the other hand, an
extension of the ground texture into surrounding near space
also might make the difference.

Judgment Accuracy Versus Task and Model
Adequacy

In addition to being compressed, our judgments were
somewhat noisy. We might attribute this partially to the odd-
ity of judging sizes in extrinsic units, namely, feet (Bingham,

I
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1993). Whereas the scales entailed by the heights of trees are
likely to be relevant to some human activities, we did not
invoke any specifically relevant activity and associated in-
trinsic units in asking our participants to estimate tree
heights. Any intrinsic scales are unlikely to be isomorphic to
the British scale of length used by our observers. Intrinsic
scaling is never homogeneous (Luce, Krantz, Suppes, &
Tversky, 1990; Marley, 1992). A functionally constrained
intrinsic scale will exhibit maximum as well as minimum
values. For instance, if the concern was with the prospect of
falling while climbing a tree, then heights over 20-30 ft
would be functionally equivalent because any such fall
would kill the climber. Thus, we need not have expected
observers to be equally accurate or reliable in judging sizes
at all scales. The increases in systematic (as well as random)
error at increasing heights certainly might have been ex-
pected. More to the point, observers were not expected to use
the information in any way, so there was no reason to have
expected anyone to be particularly skilled at this task. Ac-
cordingly, we made no attempt to select skilled observers. In
view of this, our observers seem to have performed rather
well. :

The judgments of real trees provided a baseline for what
we might have expected from judgments of simulations. We
found that simulation estimates were more error prone than
real tree estimates. On the other hand, we generated simu-
lated tree images on the basis of a rather primitive or nascent
understanding of tree morphology. According to the principle
of similitude, the forms of biological objects change or dis-
tort to preserve function in the face of changes in scale. Thus,
understanding the physical and functional constraints on bio-
logical forms is the key to understanding how specific forms
map to specific scales. At present, we have only a portion of
the relevant scaling laws at our command. For instance, naive
observers confirmed our observation that the simulations ap-
peared less convincing at the low and high ends of the height
range. With improvement in our models of physical con-
straints on form, we might improve our simulations and, by
inference, expect to reduce the errors in estimates. When
coupled with improved apprehension of those forms through
motion parallax or binocular vision, estimates might become
very accurate indeed. The bottom line is that we appear to
have discovered a new solution to an age-old problem in
perceptual psychology.
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Appendix A

Determining the Forms of Trees

Hallé, Oldeman, and Tomlinson (1978) described 23 basic ar-
chitectural models that they hypothesized to capture the diversity
of tree shapes generated by specific branching patterns. (See also
Tomlinson, 1983.) Despite architectural diversity, all tree forms
conform to two scaling relations. The first is based on the essential
light-gathering mission of trees; the second is based on mechanrical
requirements that must be fulfilled by the structure supporting the
arrayed light-gathering surfaces.

The primary objective of a tree is to present photosynthetic leaf
surfaces to sunlight. Thus, trees grow so as to cover the upper
exterior surface of their branching volume with leaves. The leaves
are of fairly constant size so that the number of leaves required is
directly proportional to the size of the total surface area to be cov-
ered (Fisher & Honda, 1979a, 1979b; Honda & Fisher, 1978; Tom-
linson, 1983). The total surface area, in turn, is proportional to the
square of the tree height (Turrell, 1961). The leaves are attached to
terminal branch segments, so the number of branches should be
proportional to the square of tree height.

Branch segments are produced in generations by a regular bi-
furcation of branches that is iterated annually (Fisher & Honda,
1979a, 1979b; Wilson, 1989). Simple iteration of the branching
pattern would result in a geometric increase in the number of
branches (Borchert & Slade, 1981). However, the growth in branch
number is constrained to follow the increase in exterior surface by
a hydraulic process that transports water and nutrients to branches
within a tree (Borchert & Honda, 1984; Honda, Tomlinson, &
Fisher, 1981; Tomlinson, 1983; Zimmermann, 1978a, 1978b.)
Branches are pruned when nutrients become unavailable. The avail-
ability of nutrient liquids is determined by constraints on root
growth and distribution, by angles at branch points, and by tran-
spiration at the leaf surface that creates a siphonlike driving force
on fluid flow. Accordingly, the total number of branches is pro-
portional to the total surface area surrounding the branch-filled vol-
ume, and thus, the number of branches on a tree is directly pro-
portional to the square of the tree height.

Empirical measure of the scaling between leaf number and tree
height has resulted in an exponent that is fractionally greater than
2 (Turrell, 1961). The reason is that trees do not cover their surface
area by means of a perfectly efficient monolayer of contiguous,
nonoverlapping leaves. Rather, the surface is covered with over-

lapping leaves that form a layer of some depth. The scaling exponent
is greater than 2 just to the extent that the leaves tend on average
to overlap. Nevertheless, N = b H? (where N is the number of
branches and H is tree height) provides a good approximation to the
scaling law determining the increase in branches with increasing
tree size (Borchert & Honda, 1984). The value of the coefficient,
b, depends on leaf size or, more precisely, on the size of terminal
leaf rosettes. On the basis of observations of many local species, we
determined the value of a by assuming a leaf rosette area of .5 m,

The second scaling law derives from mechanical constraints on
self-supporting structures. In competing among themselves for the
available sunlight, trees grow to substantial heights. The structure
that holds the leaf layer up to the sunlight must be self-supporting
and robust in the face of perturbation by wind, rain, snow, and
climbing animals. Structural engineering analysis verified by em-
pirical measures has shown that as trees grow in scale, their trunk
and limbs exhibit elastic similarity (McMahon, 1975; McMahon &
Kronauer, 1976; see also Niklas, 1992; Wilson & Archer, 1979).
Elastic similarity preserves the angle formed between a horizontal
and a line drawn from the base to the tip of the branch bent under
its own weight. The inertia (that is, weight and lever arm) of a
branch increases as it grows in length. The stiffness of the branch
or its ability to support its inertia depends on its thickness or di-
ameter. Given the constant structural properties of wood, if branch

" diameter increases in proportion to the 1.5 power of the length, then

the increases in stiffness offset increases in inertia and the structural
integrity of the branch is maintained. The analysis of the upright
trunk in central trunk trees is the same but the focus is on neutral
stability of the upright trunk in response to perturbations and, thus,
its resistance to buckling.

Elastic similarity predicts that trunk and limb diameter scale to
the 1.5 power of the height (H) of the trunk or length of the limb
respectively, that is, for trunk diameter (D): D = a H 15, The value
of the scaling coefficient, a, depends partially on the elastic prop-
erties of woods. However, the value also varies depending on how
closely trees approach the limit at which they buckle (McMahon &
Kronauer, 1976). In forest stands where competition is strong, trees
approach the limit more closely and the coefficient exhibits smaller
values. We used a somewhat larger value that has been demon-
strated as appropriate for free-standing trees.
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This power law relation grows without bound. McMahon and
Kronauer (1976) only tested this relation with trees of heights up
to about 14 m. The problem is that trees grow to maximum heights
that are characteristic for given climate zones, that is, regions with
characteristic patterns of rainfall and temperature (Kira, 1978). The
implication is that there are yet other scaling laws contributing to
the forms of growing trees. Kira (1978) developed a hyperbolic
function to model the relation between trunk diameter and tree
height based on measurements of trees in different climate zones.
The function was as follows:

MH

-, Al
aM — H) A

D

where D is trunk diameter at the base, H is tree height, and M is the
maximum height for a given climate zone. The significance of the
hyperbolic relation (as opposed to a power law) is that the function
asymptotes on a maximum value. As shown in Figure Al, the Mc-
Mahon and Kira relations remain quite close until trees begin to
approach maximum heights. The difference is that the empirically
derived Kira relation captures additional scaling constraints that
have, as yet, to be theoretically determined, constraints that only
become apparent near maximum heights.

Equation A1l determines a relation between the actual height of
a tree and the ratio of tree height (H) to diameter (D). The relation
is derived by dividing both sides of Equation A1 by H, which yields:

H=M-k d A2
= o (A2)

Given the symmetry of tree trunks about their long axis, the H/D
ratio is preserved in tree images projected to a point of observation
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Figure Al. Comparison of the power law (McMahon) and hy-

perbolic (Kira) functions scaling tree diameter to height. The
power law relation predicts unbounded increases in height.

that is sufficiently distant. The geometry of tree viewing is described
in Appendix B.

Appendix B

The Geometry of Tree Viewing

This appendix shows that optical information exists specifying
H/D for sufficient viewing distances, d, but that the information
begins to underestimate H/D as viewing distances become small,
that is, as the viewing distances approach the viewing height.

First, consider the geometry of viewing the tree diameter, D, as
seen in Figure A2a. The point of observation, o, is at a distance, d,
from the diameter that is perpendicular to line oc and through point
¢ in the center of the tree. o7 is tangent to the tree from the point
of observation, o. This ultimately determines the perceived diameter
of the tree, D' = 2 r’, which, in turn, corresponds to visual angle,
2 a. As can be seen from Figure A2a, r' < r (and therefore, D' <
D). As d increases, r' approaches r, reaching r at limit when d
reaches infinity.

An expression can be developed showing the margin of error, or
the proportion between r' and r, as a function of r and viewing
distance, d. Given r = d sin «, e = d cos a, and r' = e sin ¢, the
following can be obtained:

r' = d cos (a) sin (@)

cos a = (1 —sin’a)’ = (1 - [2] >

Inverting this expression, a function is obtained into which a desired
margin of error may be put to obtain the required ratio between tree

d cos (@) sin (o)
dsin a -

r
r

radius and viewing distance as follows:

( [rl ]2)5
={l - = .
r

So, for the perceived r’ to be within 90% of the actual r, the viewing
distance, d, must be at least 2.3 r. Likewise, for 99%, d = 7 r. These
are not very stringent requirements. A viewing distance of 15 ft
(4.57 m) yields 99% accuracy for trees of trunk diameter of 4 ft (1.22
m) or less. Assuming viewing distances of at least 15 ft, we use the
approximation shown in Figure A2b, for which r/d = tan «, and so
r=dtanaand D =2 r = 2d tan a.

Turning next to the geometry of viewing tree height, H, the situ-
ation appears in Figure A2c. An observer of eye height, h, at point
of observation, o, is at a perpendicular distance, d, from the tree
trunk. The viewing angle from the horizontal to the bottom of the
tree is B; and the viewing angle to the top of the tree is B8,. Angles
above the horizontal are negative. From this we obtain d = T, cos
Bi,d = T, cos By, and H = [T sin B,] ~ [T; sin B,], where recall
for the latter that sin(—x) = —sin(x). Setting H over d we obtain H/d
= tan B, —tan B, so that H = d [tan 8, — tan f3,]. Note that tan(—x)
= —tan(x), also.

To bring the two expressions for D and H together, we first note
that the distance from o to the diameter at the base of the tree is T,
= [d®+h?] and that this must replace d in Figure A2b and in the

aul~
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Figure A2. The geometry of viewing trees. Top: The geometry of
viewing trunk diameter. See the text for explanation. Middle: The
approximation used for viewing at sufficient distance. Bottom: The
geometry of viewing trunk height. H is tree height, % is eye height,
o is the point of observation, d is the viewing distance. See the text
for further explanation.

expression for D so that
D =2\/d* + h’tan .
Using this and the expression for H, we obtain

H _d[tan B, —tan §,]

— 2 (B1)
D 27\/d*+ h'tan @

The optical information about the H/D ratio is as follows:
H_[tanB -tanp,] (B82)
D 2tan «
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Figure A3. The ratio of optical H/D to actual H/D with increas-
ing viewing distance.

The condition for the strict equivalence of Equations Bl and B2 is

1=—9 . ®3)

&+ h

This is satisfied when & = 0, that is, when the point of observation
is at ground level. However, in general, Equation B2 approximates
Equation B1 where the error of the approximation is determined by
the magnitude of d in relation to h. Thus, for £ = 6 ft (1.83 m), H/D
is accurately specified at viewing distances sufficiently larger than
6 ft. The degree of difference between H/D as determined by Equa-
tion B2 as opposed to Equation B1 for 4 = 6 ft is shown in Figure
A3 where the ratio of H/D computed using Equation B2 to H/D
computed using Equation B1 was plotted as a function of viewing
distance.

Finally, we note that analytically accurate estimates of tree height
could be obtained using Equation B2 by setting # = 0 at eye height
and estimating tree height only for that portion above eye height and
then adding the eye height value to the resulting tree height estimate,
assuming that eye height is known.
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