Dynamics and the Problem of
Visual Event Recognition

Geoffrey P. Bingham

EDITOR’S INTRODUCTION

How is visual perception possible? In particular, how is it that what one typically
sees is a relatively simple world of objects and behaviors, when what reaches the eyes
is a fantastically rich, seemingly chaotic play of stimulation? How does one's visual
system manage to reach behind the superficial confusion to the stability and order
that are responsible for it?

In this chapter, Geoff Bingham confronts one version of this problem, that of
recognition of events. We constantly perceive what is going on around us as mean-
ingful events of certain kinds: a person walking, a ball bouncing, water flowing.
Psychologists have established experimentally that people are very good at recogniz-
ing the nature of an event from the visual motions the event produces; thus it is easy
to see that a flow of light patches against a dark background is produced by a ball
bouncing. The event itself is determined by a characteristic dynamics; thus the laws
of classical mechanics determine the motion of a bouncing ball. The problem of event
recognition is fo recover the dynamics of the event from the visual motions, i.., the
kinematics.

One problem in event recognition is that researchers have believed the motions fo
be ambiguous; the same surface motions might have been produced by many kinds
of dynamics. A standard approach to the difficulty of narrowing down the search has
been to use the assumption that only rigid objects are involved. Yet, as Bingham
points out, events involving rigid objects are just one kind among many that we can
distinguish; hence the rigidity assumption is a dead end. Acknowledging this, how-
ever, seems to render the problem insoluble. There must be some further kmd of
structure or information that we rely on in recognizing events. .

If we think of the sensory periphery as a kind of boundary between inner and
outer, then cognitive scientists can proceed in at least two ways. demonally, they
focus on what is inside this boundary, on the states and processes that supposedly
enable a cognizant agent to piece together an interpretation of the world based on
impoverished sensory data. On this approach, the further mformatwn that is needed
to solve the problem of event recognition must take the form of internally represented
background knowledge which is brought to bear in complex computational operations.
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An alternative approach is to focus on what is outside the boundary. Perhaps
there is already present in the sensory stimulation information enabling the system to
identify the nature of the event. If this is right, the fask of the visual system would
just be to pick up on that information; the need for internal representations and
computations would be minimized. From this perspective, then, an essential prelimi-
nary to investigating the internal cognitive mechanisms involved in visual perception
is to develop, as Bingham puts it, “a job description for the sensory apparatus.”

In this chapter, Bingham takes this second approach, and argues that the dy-
namics of the event is no, in fact, as hopelessly underspecified by the kinematics as
might be supposed. Natural events are constrained by natural law, and hence the
motions that result reflect certain universally valid circumstances such as the con-
stancy of gravitational force and the unidirectionality of time. Further, if one adopts
a suitably global perspective (i.e., one that accords with the time scale of the complete
event itself), then there exist symmetries in the temporally extended pattern of sen-
sory stimulation that further constrain the nature of the event that could have
produced it.

Bingham substantiates these points with extended analysis of a particular exam-
ple, that of a ball rolling back and forth inside a U-shaped container. If one visually
tracks the movement of individual points on this ball, the result is a myriad of short,
disjointed frajectories. The problem is to show that this information, together with
further ecologically valid assumptions, uniquely constrains the nature of the event
responsible (a ball rolling); or, to put the point another way, that under normal
ecological conditions, the mapping from the dynamics of an event to the kinematics
of the optic array is unique and reversible. The cognitive task of event identification
appears far less daunting if this bold claim can be substantiated.

14.1 INTRODUCTION

- People are able to recognize an indefinite variety of events visually. Motions

in events have been shown to provide the information. The question is, What
optical information do people use to recognize events, that is, how do mo-
tions get into optics? For instance, consider the visual perception of a ball
rolling over a surface. This event can be readily recognized even when it
appears in a video display in which only small bright irregular patches on the
ball are visible in darkness. In analyzing the perception of this event, we must
be careful to distinguish between the event and the optics. In the event ifself,
each patch follows a continuous trajectory along a path of particular shape
and with a velocity that varies in a particular way along the path. Each patch
follows a path of somewhat different shape with a somewhat different veloc-
ity pattern and’each of these patterns may be shifted somewhat spatially
relative to the others along the surface. How are all of these distinct patch
trajectories combined to yield the perception of a unitary coherent event?
The problem is more difficult than this, however. In the display, the patches
blink on and off. They appear and disappear as they roll up over the top of
the ball and then around behind the ball. In the optics, a patch follows a
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discontinuous piece of a trajectory. Each trajectory piece has a somewhat
different path shape and velocity pattern and each piece is spatially shifted
with respect to all of the other pieces across the display. Most important,
pieces sampled successively from the trajectory of a single patch in the event
itself cannot readily be identified as such. Each sampled piece from a given

event trajectory is separated by a relatively large distance from the preceding -

and following pieces. Neighboring trajectories are arbitrarily close and may
be easily confused. The optics consists, therefore, of a very large collection of
qualitatively distinct and spatially disparate trajectory pieces. Nevertheless,
this extremely complex mess is perceived simply as a single rolling ball. How
is this possible? Clearly, the collection of trajectory pieces must be structured
and the perceptual system must detect and use that structure.

The difficulty is that events are inherently time extended so that the struc-
ture used to identify events must also be time extended. Historically, the
trend in analysis of optical structure has been away from structure that is
strongly local in space and time toward more global structures. This trend has
been largely motivated by the intractability of the problems formulated on the
basis of very local structure. The optical array is used to describe the pattern
in light projected from all directions to a point of observation. Optical flow
is the changing pattern produced when the point of observation moves or
when surfaces in the environment around a point of observation move. The
optical array was introduced by Gibson (1961) to emphasize spatially extended
structure surrounding an observer and to provide a means of capturing opti-
cal flow. With the introduction of optical flow, the relevant structure became
extended in time beyond instantaneous snapshots. However, the extension in
time has only progressed in the majority of extant analyses to a sequence
of two or three images obtained over a few milliseconds and yielding an
extremely brief sample of optical flow over distances within an infinitesimal
neighborhood of a point in the flow field. Because of the strongly local char-
acter of these measurements, the results of the analyses have not been stable
in the face of perturbations representing noise engendered by the sensory
apparatus. An assumption that an event consists of strictly rigid motions has
been used in an attempt to make analysis less local. Rigidity of motion means
that distances between points in three-dimensional space are preserved so
that the motions of a given point constrain those of neighboring points.
However, recent investigations have shown that only truly global analysis
will resolve these difficulties (Bertero, Poggio and Torre, 1988; Eagleson,
1987; Hildreth and Grzywacz, 1986; Hildreth and K_bch,’,1987; Jacobson and
Wechsler, 1987; Nagel, 1988; Ullman, 1984; Verri and Poggio, 1987, 1989).

A global analysis is advocated in this chapter for a different but related
reason. To assume rigid motion is to beg the question of event recognition.
Rigid motion is but one of many types of motion ﬁ'\at can occur in a wide
variety of distinct types of recognizable events. Such motions include, for
instance, elastic, plastic, liquid, or ethereal motions, among others. Truly time-
extended information is required to enable recognition of these types of
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events. For instance, imagine trying to distinguish among the following
events in which irregular tickets of white paper have been used as patches
appearing in otherwise dark displays: patches on the facial skin of a talking
person, patches on the surface of vibrating jello, patches on the surface of a

" trampoline during gymnastic exercises, patches on the surface of water being

stirred or splashed by a projectile, patches on a handful of coins being slid
across the bottom of a wooden box, patches being blown across a surface
like leaves blown across a lawn in autumn, and patches on a collection of
Ping-Pong balls dropped on a tile floor. All of these events involve nonrigid
motions. All might be distinguished with sufficiently time-extended samples.
Each involves different physical constraints on the motions of the patches.
Each, accordingly, involves a distinct type of motion. The challenge is to
characterize the motions in a way that enables us to begin to formulate the
event recognition problem.

For the purpose of providing an initial outline of the problem of event
recognition, I will characterize events in terms of trajectory forms in phase space
(in which velocities are plotted against position).! .Characterized in this way,
events appear as spatiotemporal objects that can be mapped via perspective
projections into an optical phase space of lower dimension. Events then can
be distinguished on the basis of qualitative properties.

I begin by reviewing the evidence on event recognition via forms of mo-
tion. Next, I consider how mere motions can provide information about the
substantial types and properties of events. To anticipate briefly, formulation
in terms of the qualitative properties of trajectories allows one to use qualita-
tive dynamics to capture, in a single qualitative characterization, both the
substantial properties of events (in terms of dynamics) and the information
about them (in terms of kinematics). Geometrically, dynamics corresponds to
vector fields in phase space while the kinematics are trajectories in phase
space. The forms of dynamic vector fields are identical to the forms of the
kinematic trajectories that lie tangent to them and are determined by them.
Under this abstract and qualitative way of construing dynamics, kinematics
(i.e., motions) and dynamics (i.e., physical properties) are commensurate and
kinematics can specify dynamics. Along the way, I describe the relation
between the kinematic specification of dynamics and the notion of direct
perception. :

Next, an example, namely, a ball rolling on a curved surface, is used to
illustrate the problems engendered by the projection of event phase-space
trajectories into an optical phase space of lower dimension. The question is,
What qualitative properties are preserved in the projection to optical flows?
Finally, the ultimate difficulty, the degrees-of-freedom problem, is discussed
together with methods of qualitative dynamics that can be used to solve it.
The degrees of freedom are the separate items that must be measured (or
apprehended) and evaluated. The difficulty, as I have already indicated, is
that occlusion yields disconnected pieces of trajectories in the optics. When
counted, these pieces amount to an excessively large number of potential
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degrees of freedom. The problem of perceptual organization, as formulated
by the Gestalt psychologists, must here be confronted. To anticipate, I sug-
gest that a solution can be found in the qualitative properties of event tra-
jectories. Symmetries® apparent in the form and layout of trajectory pieces
can be used to collapse the pieces together into temporally continuous and
spatially coherent forms, reducing the degrees of freedom and revealing
information that could be used for recognition.

14.2 THE EVIDENCE FOR EVENT RECOGNITION

Evidence has been amassed over the last 30 to 40 years demonstrating irre-
futably that people are able to recognize specific types of events and specific
properties of events via detection of particular forms of motion. The majority
of the extant research in visual event perception has been focused on scaling
problems, that is, the way that magnitudes associated with particular event
properties are apprehended. This research has included investigations on the
perception of the sizes and distances of objects in free fall (Johansson and
Jansson, 1967; Muchisky and Bingham, 1992; Watson, Banks, von Hofsten, et
al, 1993); perception of the lengths of swinging pendulums (Pittenger, 1985,
1990); perception of amounts of lifted weight (Runeson and Frykholm, 1981,
1983; Bingham, 1985, 1987b); perception of relative amounts of mass in
collisions (Proffitt and Gilden, 1989; Runeson, 1977; Runeson and Vedeler,
1993; Todd and Warren, 1982); perception of the age of growing heads
(Mark, Todd, and Shaw, 1981; Pittenger and Shaw, 1975; Shaw, Mark, Jenkins,
et al,, 1982; Shaw and Pittenger, 1977, 1978; Todd, Mark, Shaw, et al., 1980);

" perception of the elasticity of bouncing balls (Warren, Kim, and Husney,

1987); and perception of the time of contact of projectiles (Lee, Young, Red-
dish, et al, 1983; Todd, 1981). All of these scaling studies have implicitly
involved the problem of recognition because any property or dimension to
be scaled must first be recognized. For instance, to judge pendulum length via
the period requires that an observer recognize the freely swinging pendulum
event as well as the event property, pendulum length. Successful performance
in all of the cited scaling studies has implied that observers have been able to
recognize the event properties whose scale values they judged. To this may
be added evidence from investigations explicitly on recognition.

The inaugural studies on visual event recognition include those of Duncker,
Michotte, Wallach, and Johansson. Duncker (1929/1950) demonstrated the
recognition of a rigid rolling wheel via the relative motions of points on the
hub and the rim. Michotte (1963) studied the recognition of launching vs.
triggering events as the timing along trajectories was varied. Wallach and
O’Connell (1953) investigated the recognition of wire frame objects via the
so-called kinetic depth effect. Finally, Johannson (1950), in giving event per-
ception research its name, placed it in the context of established problems in
perceptual research, namely those of perceptual organization and constancy.
Manipulating the motions of points or elements in a two-dimensional display,
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Johansson sought properties of relative motions that would result in the
perception of a single coherent moving three-dimensional object. In addition,
Johansson distinguished between displays that yielded perception of rigid vs.
nonrigid objects and inquired as to the conditions yielding the shape con-
stancy of rigid objects (Johansson, 1950, 1964, 1973, 1985). This led to an
entire area of research on object recognition called “structure-from-motion” in
which the assumption of “rigid motion” has been used in theorems proving
that three-dimensional object structure can be derived from sampled optical
transformations (Hildreth, 1984; Hildreth and Hollerbach, 1987; Hildreth and
Koch, 1987; Longuet-Higgins and Prazdny, 1980; Marr, 1982; Prazdny, 1980;
Ullman, 1979).

“Structure-from-motion” research owes as much to Gibson's studies on the
visual control of locomotion and flight (e.g., Gibson, 1955, 1958, 1961, 1966;
Gibson, Gibson, Smith, et al., 1959) as to Johansson's studies on event per-

“ception. The rigid/nonrigid distinction has been used to investigate perspec-

tive transformations that occur as a point of observation is moved through
the environment. The assumption that the environment should be entirely
rigid (and therefore static) yields a reasonable first approximation to optical
flows encountered during locomotion (Nayakama and Loomis, 1974). How-
ever, the ultimate weakness of this approach is revealed in the context of
the more general problem of event recognition. Researchers have claimed
that the rigid motion assumption is required for unique interpretation of
flow patterns because nonrigid motions allow an indefinite number of inter-
pretations in terms of depth and motions (e.g., Hildreth and Hollerbach,
1987; Nayakama and Loomis, 1974). However, “nonrigid” has been used here
incorrectly to mean “arbitrary” motion. Nonrigid motions are not arbitrary,
as shown by the number of distinct kinds of “nonrigid” events that. are
recognizable.

In fact, the majority of studies demonstrating and investigating visual
event recognition have involved nonrigid motions (Bingham, Rosenblum, and
Schmidt, in press; Cutting, 1982; Fieandt and Gibson, 1959; Jansson and
Johansson, 1973; Jansson and Runeson, 1977; Todd, 1982), and in particular
those of human actions (Barclay, Cutting, and Kozlowsky, 1978; Cutting,
1978; Cutting and Kozlowsky, 1977; Cutting, Proffitt, and Kozlowsky, 1978;
Frykholm, 1983; Johansson, 1973, 1976; Todd, 1983). These studies alone,
however, do not reflect the proportion or variety of recognizable events
involving different kinds of nonrigid motions. Such motions include varieties
of bending, as of a human trunk or elbow, a paper clip or a tree limb buried in
snow; types of folding, tearing, and crumpling, as of pieces of paper, the body
of a car, or a loaf of fresh Italian bread; varieties of breaking, as of glass,
a cookie, a wooden board, or a loaf of stale Italian bread; types of elastic
stretching or compressing, as of a hair net, a bouncing ball, a tree branch
blowing in the wind, vibrating jello, or a human face forming various expres-
sions; kinds of plastic deformations, as in forming clay figures, kneading
bread, making snowballs, or leaving footprints in soil; types of liquid flows

Geoffrey P. Bingham




o

5 oo. oL B ®

w

xR
~°

|
|

409

involving the pouring, running, bubbling, and splashing of liquids of varying
viscosity, as of water, oil, molasses, or thickening gravy cooking on the
stove; varieties of flows of gases, as of steam or smoke in air; snow or leaves
blown in a breeze, and so on. The great diversity of different types of non-
rigid events that might be perceptually identified renders any simple distinc- -
tion between rigid and nonrigid far too weak and inadequate to address the
problem of visual event identification. -

The rigidity of objects is a physical property which, like elasticity, plas-
ticity, or fluidity, can generate specific types of motions. The question is
whether observers are able to recognize such properties in specific instances
and if so, how? More generally, the identification problem is, first, to discover
what types of events and event properties observers are able to recognize
and, second, to describe the information enabling them to do so. For instance,
Bingham et al. (in press) have shown that observers were able to recognize
events including free fall and elastic rebound, swinging pendulums, rolling
balls, stirred water, objects dropped into water, and tickets of paper blown
and falling through air, all from the forms of miotion displayed in patch-light
video recordings.

The patch-light technique isolates motion as information from static fig-
ural properties. Events are filmed so that bright patches of reflective material
placed on surfaces in events appear against a dark (structureless) background.
When these displays are freeze-framed, they appear as only a random array
of irregular patches. When set in motion, the recorded events are typically
recognized quite readily.

In the Bingham et al. study, observers’ descriptions of the patch-light
events reflected the underlying types of dynamics rather than simple kine-
matic similarities like the presence or absence of rotational motion in the
display. Events involving rigid-body dynamics were described as more simi-
lar to one another and distinguished from hydrodynamic or aerodynamic
events which were similarly grouped. Observers also distinguished the in-
animate motion of a falling and bouncing object from the animate motions
produced when the same object was moved by hand along the same path, to
the same endpoints, and at the same frequency. Motions produced by the
biodynamics reflected increases in mechanical energy, while those produced
only by rigid-body dynamics reflected strict dissipation of energy. In all
cases, recognizably different events were produced by different generative
dynamics. -

The forms of motion corresponding to each event were sampled from the
video recordings and captured in phase-space trajectories. In each case, the
trajectory form reflected the dynamics that generated the form. For instance,
as shown in figure 14.1, the free fall and bounce proeduced a parabolic trajec-
tory (characteristic of gravity) with a flat base (cofresponding to the impact
and elastic rebound) followed by a decelerative parabolic trajectory rising to
a height diminished by energy dissipation. In contrast, the object moved by
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Figure 14.1 (Top) The phase trajectory of a free-falling and bouncing spring. (Botom) The
phase trajectory of the same spring moved by hand to the same endpoints at the same
frequency.

hand produced an elliptical trajectory (characteristic of human limb move-
ment) with a half-flat base (corresponding to inelastic impact and loss of
energy), followed by an accelerative elliptical trajectory (which reflected en-
ergy increase). These spatiotemporal forms in optical flows provided visual
information enabling observers to recognize the corresponding events. Such
information is paradigmatic of the understanding of perceptual information
developed by Gibson.

14.3 DIRECT PERCEPTION: INFORMATION AND
INFORMATIONAL BASES

How can optical patterns have perceptual significance? How can they provide
information about objects and events in the surroundings? How can they
specify what is happening? Two classic solutions to these questions were
rejected by Gibson (Gibson, 1950, 1966, 1979; Reed, 1988; Reed and Jones,
1982). The first, usually attributed to Berkeley, is that optical patterns gain
significance by virtue of associations with haptic experience, i.e., touch and
kinesthesis. The difficulty with this idea arises with the realization that
haptics only functions well in the context of voluntary movements. Objects
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and properties of objects (e.g., surface compliance, surface texture, weight
and inertial distribution, shape, etc.) can be identified rapidly and reliably only
when an observer is allowed to actively explore and manipulate an object
(Gibson, 1962, 1966; Klatzky, Lederman, and Metzger, 1985; Lederman and
Klatzky, 1987). Understanding how spatiotemporal patterns of tissue defor-
mation provide information about objects and events (including the perceiver’s
own activity) is, if anything, a more difficult problem than that encountered in
vision. This is, in part, because the problems in understanding the control and
coordination of actions are inherited as part of the problem of understanding
haptics (although ultimately action is a part of the problem of visual recogni-
tion as well) (Bingham, 1988). More to the point, the effective patterns of
tissue deformation that impinge on the sensory receptors in haptics are less
accessible to measurement and manipulation in experiments. Finally, and most
important, it is spatiotemporal patterns of tissue deformation, i.e., change in
geometric configurations over time, that provide information in haptics just
as in vision (Bingham, Schmidt, and Rosenblum, 1989; Pagano and Turvey,
1993; Solomon, 1988). This realization undercuts any intuition that a solution
to problems in vision, if seemingly insoluble, should be found only in haptics.

The second dassic solution is that optical patterns have significance by
virtue of a similarity relation to that about which they provide information,
i.e, that optical patterns are copies of environmental pattemns. Gibson also
rejected this alternative. Gibson's analysis of optical occlusion is a paradig-
matic case (Gibson, 1979; Gibson, Kaplan, Reynolds, et al,, 1969). The dele-
tion of optical elements along a boundary specifies one surface becoming
hidden by another by virtue of a change in perspective. With progressive
deletion, optical elements cease to exist in the optical pattemn. However, the
significance of this optical flow pattern does not inhere in a similarity relation
to what is specified. The optical pattern does not specify surface elements
going out of existence in the environment. Why not? Because surfaces do not
go out of existence neatly and quietly at an edge, although they do go out of
existence in a variety of other ways constrained and determined by natural
laws. Surfaces can burn, explode, evaporate, melt, break, and so on. Each of
these types of events produces corresponding types of optical transforma-
tions that are distinct from progressive deletion along a boundary. Also, each
of the former events is irreversible, whereas the hiding of a surface via change
in perspective is reversible, yielding accretion of optical elements at a bound-
ary. Thus, Gibson argued that the particular pattern of optical flow can spec-
ify an event to which it corresponds by virtue of natural laws that determine
the particular form of both the event and the optical flow.

The historical precedents to this understanding take us back at least as far
as Hume (1739/1978). He argued that perception only has access to motions,
not causes, because optical (or acoustical, etc.) patterns involve space and
time, but not mass or force. His skeptical argument was a natural exten-
sion of arguments to the effect that perception only has (direct) access to
“phenomena” described via only two spatial dimensions and time because the
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third spatial dimension is absent in optical pattern. Such phenomenalism has
been standard fare in the philosophy of perception and widely advocated
despite its leading inevitably to the absurdities of solipsism. Rejecting phe-
nomenalism requires that perception have direct access to information spec-
ifying substantial properties of the surroundings (Shaw, Turvey, and Mace,
1981; Turvey, Shaw, Mace, et al,, 1981).

Hume, writing just after the publication of Newton's Principia, resorted
to the billiard table to illustrate his understanding. Hume recognized the
invariance of the motions that ensue once the cue ball is sent rolling so as to
collide with the eight ball. The same motions result each time the balls are
positioned and set moving in the same way. Nevertheless, Hume argued that
an observer could not obtain epistemological access to the substantial prop-
erties of the event because the latter lay beyond the mere motions and only
the motions are communicated to the eye via patterns in light. Because of the
unique relation between motions and their causes, the two cannot be sepa-
rated and observers have no means by which to get past the kinematics to
reach the dynamics. He argued that the observer has direct access only to
patterns of contiguity in space and time.

Two hundred years later, Michotte (1963) performed demonstrations which
contradicted Hume's conclusions. The irony is that Michotte used technology
that was available to Hume so that Hume might have made the discovery
himself. Michotte devised a way to simulate linear collisions in displays
that enabled him to perturb the kinematics without concern for underlying
dynamics. (See Michotte, 1963, for details. This is now achieved using com-
puter simulations.) When shown Michotte’s collision displays, observers rec-
ognized them as collisions. In these displays, one simulated object approached
a stationary object, contacted it, and stopped moving, while the contacted
object instantly carried on the motion. Michotte then inserted a brief delay
at the point when the two simulated objects came into contact so that
the second object hesitated for fractions of a second before beginning to
move. The result was that observers no longer recognized the display as of a
collision. The slight perturbation changed the perceptual significance. The
implication was that particular kinematic patterns have particular perceptual
significance.

The upshot was that Hume's argument should be turned on its head. In-
deed, causal constraints on events produce invariant forms of motion given
invariant initial conditions. The invariance is a reflection of the underlying
determinism which allows motions (and corresponding optical patterns) to
be informative. They are informative by virtue of unique correspondence.
The correspondence is enforced by natural laws, ie., by dynamics. Note that
not just any kinematic pattern will be perceptually significant. The perturbed
kinematics in Michotte’s demonstration were rather odd. Forced to describe
what they perceived, observers rather creatively described the display as
specifying a “triggering” event, as if the first object triggered the release
of energy stored in a spring which then sent the second object on its
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way. However, the instantaneous acceleration of the second object does not
look exactly like such a triggering event. Runeson (1977) pointed out that
Michotte did not manipulate simulated dynamics to produce his displays
and thus the simulations were inaccurate and the displays rather ambiguous.

Todd (1982) inadvertently illustrated this methodological difficulty by
manipulating only kinematics while trying to discover the forms of motion
specific to bipedal walking and running as recognizable types of locomotor
events. Todd began with digitized trajectories from actual walking and run-
ning. He then independently manipulated the motions for each of the 7
degrees of freedom in his stick figure legs, mixing and matching motions
from the walking and running. The results were always rather ambiguous.
Some looked more like running or walking as the case might be, but none
were very convincing. Todd concluded that he really did not have a clue as
to the essential characteristics of motions identifiable as walking or running
and that he was lost in the sea of kinematic possibilities allowed by the
7-degrees-of-freedom system. A better approach would be to start from an
understanding of the dynamics of these locomotor events. Walking can be
understood as a system of upright and inverted pendulums, whereas running
entails a mass-spring dynamic (McMahon, 1984). Investigation should pro-
ceed via perturbations performed with respect to these dynamics. For in-
stance, as implied by the pendular dynamics and as shown by Bingham et al.
(in press), the orientation of the kinematics in the gravitational field contrib-
utes to its perceptual significance. Perturbation of the orientation alters the
significance. Likewise, would recognition be stable in the face of perturbation
of the gravitational value or the stiffness of the leg or changes that alter the
direction of energy flows among the link segments?

Runeson and Frykholm (1983) formulated kinematic specification of dy-
namics (or KSD) as a principle to be used to guide investigations of per-
ceptual information. They referred to dynamics as an “informational basis,”
meaning that which enabled kinematic pattern to specify events. In so doing,
they made explicit what remained implicit in Gibson's original analysis of
occlusion. Gibson was circumspect about the importation of dynamics to the
study of perception (Gibson, 1979; Reed, 1988). He emphatically wished to
avoid the “error of confusing descriptions with things described” (so named
by Dewey and Bentley, 1949). Gibson referred to perceptible properties as
“affordances” to keep them well anchored within a functional context in
which perception is motivated by action. As such, perceptible properties re-
main to be discovered and described by perception research. They cannot not

" be found in a dictionary of physics or in Webster's. Nevertheless, the power-

ful analytical apparatus of dynamics can be applied to analysis and perturba-
tion of optical information as long as we remain mindful of the fact that types
of recognizable events and event properties need not correspond directly to
any of the familiar concepts in dynamics (Bingham and Muchisky, 1993a,b;
Bingham et al,, in press).
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An essential aspect of this approach is the realization that unique corre-
spondence between, e.g., optical pattern and events can only be found at
certain levels of analysis. The scope must be sufficiently wide to include
relevant structure. For instance, no single momentary velocity in a collision is
specific to the type of event (anymore than it would be sufficient for a dy-
namical analysis of the event). Rather, the pattern of variation in velocities
over significant spatial and temporal extents is required to achieve unique corre-
spondence. This point is central to the current discussion of event recognition
and the critique of extant analyses of optical flow. In the “structure from
motion” corpus, analysis of optical flow has been restricted to structure cap-
tured in brief moments spanning a sampling interval of a few milliseconds,
namely, a vector field. Such structure could not be used to identify events
because, as shown by Bingham et al. (in press) and related studies, events are
only specified by structure in optical flow that emerges over the entire course
of an event. The information must be contained in various forms of optical
transformation occurring at specific rates corresponding to the rate structure
of motions in an event.

The mapping of event motions into optical flows can be described in terms
of a relation between kinematic variables. Event velocities at given positions
in three-dimensional space project to optical velocities at corresponding posi-
tions in the two-dimensional optical array. The question is whether qualita-
tive properties of event trajectories are preserved in the mapping to optical
trajectories? The first difficulty is entailed by the projection from three- to
two-dimensional space (or if we include velocities associated with each posi-
tion coordinate, the projection from six- to four-dimensional space). Compo-
nents of the event kinematics that are radially directed with respect to the
point of observation do not map directly into optical flows. Nevertheless, as
will be shown, radial components of event kinematics do determine distin-
guishable components of optical flow that preserve the original forms of the
event kinematics.

The final difficulty underlying the problem of event recognition is the
degrees-of-freedom problem, that is, the problem of reducing the complex
and large number of distinct motions (e.g., of patches) to the simple coherent
motion of a single event. The optical phase space mapped from an event will
contain an extremely large number of distinct trajectories. Any event consists
of a continuous spatial distribution of points, each following a different trajec-
tory. Only portions of the original event kinematics find their way into the
optics. During an event, points go out of and come into view as they are
occluded by other parts of a moving object or by surrounding objects. This
happens not only with a rolling ball but also as limbs appear and disappear
behind one another when a person locomotes or when a tree blows in the
wind. It occurs as waves on the ocean occlude one another and passing
vessels, as cars occlude one another in traffic, or as pedestrians occlude one
another on city sidewalks, as a dancer performs pirouettes, as one stirs one's
oatmeal, and so on. The result is that most any given trajectory is sliced into
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myriad disjoint pieces which, together with those from other trajectories,
produce a massive collection of nonidentical trajectory pieces. The disjoint
character of the pieces from a given trajectory coupled with the simultaneous
presence of arbitrarily close pieces from distinct trajectories prevents the
simple reconstruction of individual trajectories. Given such a tangled mass of
trajectory pieces, how might a single, unitary, and coherent event be appre-
hended? I will demonstrate how symmetries apparent in the layout of optical
trajectories can allow the dimensionality to be reduced so that the underlying
form might be apprehended. The suggested bottom line is that the global
structure of event trajectories is required to yield a specification of events.

14.4 THE RELATION OF EVENT KINEMATICS TO DYNAMICS:
THE KINEMATIC SPECIFICATION OF EVENTS

Rejecting the “Missing-Dimension” Characterization

Originally, the formulation of the kinematic specification of dynamics was
inspired by the ability of observers of patch-light displays to apprehend
values of dynamic properties such as relative mass or lifted weight (Bingham,
1987b, 1993; Runeson, 1977; Runeson and Frykholm, 1981, 1983; Runeson
and Vedeler, 1993; Todd and Warren, 1982). In the context of this scaling
problem, kinematic specification of dynamics has been cast as an “inverse
dynamics” problem. Inverse dynamics, or the derivation of dynamics from
kinematics, has been described, in turn, as a missing-dimension problem (Bing-
ham, 1987b; Runeson and Frykholm, 1983; Warren and Shaw, 1985). Kine-
matic variables (e.g., position, velocity, acceleration, etc) are defined using
only the length and time dimensions [L, T}. For instance, position might be
expressed in meters (dimensionally [L]) and velocity in meters per second
(dimensionally [L/T}). On the other hand, dynamic variables (e.g., mass, force,
stiffness, damping, etc.) also require the mass dimension [M]. So, mass might
be expressed in kilograms (dimensionally [M]) and force in kilogram-meters
per second squared (dimensionally [ML/T2]). For inverse dynamics, how is
the missing mass dimension recovered from kinematics?

For instance, the dynamic equation describing a mass-spring oscillator is
m(d?x/di*) = —kz, where m is mass, k is stiffness, x is position, and d2x/df* is
acceleration. The terms in this equation involve [M] because each includes a
mass-related (i.e., dynamic) parameter, namely m or k, as well as kinematic
variables x or d%z/df*. Dimensionally, m and k are [M] and [M/T?] while x
and d2x/df? are [L] and [L/T?2], so each term in the equation is dimensionally a

~force, i.e., [ML/T2]. The dynamic equation determines motions or behaviors

described via a kinematic solution equation, in this case x = A sin(w + ®). In
this equation, the amplitude, A, and the phase, ¢, are kinematic constants that
depend only on initial conditions. Thus, they are arbitrary in respect to the
dynamics. In contrast, the angular frequency, o, is determined by the two
dynamic parameters, w = (k/m)->. In this ratio, the mass dimension cancels
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out leaving a quantity that is kinematic (((M/T?)/{M])* = [T™']), and thus
appropriate for the kinematic equation. However, because of this, the kine-
matics, used as information about the dynamics, can only yield a determina-
tion of the ratio of the dynamic parameters, k/m. Determination of unique
values of either m or k is not possible. This is a typical instance of the
missing-dimension problem of inverse dynamics.

A potentially general solution to this problem is revealed by studying a
closely related type of dynamic, that of the simple pendulum. The key to the
solution is the observation that a unique value for one parameter would be
specified if identifiable circumstances constrained the value of the remaining
parameter. The dynamic equation for the simple pendulum can be written as
(d*¢/dF*) = (g/1)sin ¢, where ¢ is the angular position at the pivot, ! is the
length of the pendulum, and g is the gravitational acceleration. The situation
seems the same as for the mass-spring system because the frequency of mo-
tion corresponds to a ratio of parameters, @ = (g/l)->. However, g is a scaling
invariant in the terrestrial sphere. Gravitationally determined trajectories ap-
pear as parabolas in phase space. By virtue of this characteristic form, gravita-
tional trajectories can be recognized, in principle. This particular circumstance,
or “uniquity condition” (Sziics, 1980), imposes an identifiable scaling con-
straint so that the frequency of motion (or its inverse, period) specifies the
length of the pendulum. Indeed, as shown by Pittenger (1985, 1990), ob-
servers are able to evaluate pendulum lengths on the basis of periods of
oscillation. Uniquity conditions may provide a general means by which scal-
ing problems are solved (Bingham, 1988). If so, then the particular circum-
stances that determine a scaling constraint must be identifiable. This is a
second way in which scaling would entail recognition.

At this point, the reader might have noted that there was no mass parame-
ter in the pendulum equation. Dimensionally, the equation that I used was
kinematic. g is an acceleration [L/T?} while / is a length [L]. However, follow-
ing the Newtonian procedure of “force balance,” the equation would first
have been written as ml?(d2¢/dt*) = mglsin g, where ml* = [ is the rota-
tional inertia. When the inertia is divided into both sides of the equation, the
mass cancels and the terms in the resulting equation have kinematic dimen-
sions only. This trick is not peculiar to the pendulum. For instance, the dy-
namic equation used to describe the mass-spring oscillator can also be written
as d?x/dt* = — (k/m)x, which has the dimensions of acceleration [L/T2]. Nor
does the elimination of the mass dimension mean that the “dynamics”
were eliminated. To the contrary, the dynamics are simply those lawful rela-
tions that generate specific forms of behavior given initial (and boundary)
conditions.

The fact that this strategy is general and paradigmatic* suggests that the
“missing-dimension” characterization of the kinematic specification of dy-
namics is misleading. The problem is not to recover a missing mass dimension
so much as to recognize a particular (perhaps scale-specific) type of event
generated by a configuration of scaling parameters on kinematic variables.
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Ultimately, dynamic equations can always be tormulated in a dimensionless
form in which no units are associated with any of the terms in the equation.
A dimensionless equation is achieved by forming ratios among the elements
in an equation so that the associated units cancel, leaving pure numbers

(Baker, Westine, and Dodge, 1973; Emori and Schuring, 1977; Sziics, 1980; "

Thompson and Stewart, 1986). For instance, the equation for a force-driven
damped mass-spring oscillator is as follows:

N .
‘th +bd + kx = Fcos wf (1)

Each term in this equation has the dimensions of force, [ML/T2]. So dimen-
sionally, the equation is:

il [ ][] (=

To write equation (I) in dimensionless form, one can formulate a set of
dimensionless numbers (sometimes called pi numbers (Emori and Schuring,
1977)) in terms of ratios and products of the original set of parameters and

variables.
M
-—Ii!ll] 7t=a)t-i-m 1:=Eé|:T][T]
"Tr, M 2 [T] Tm M
M ML
] RV L

where o is a reference length, such as the undeformed length of the spring.
Next, one can write the original equation in terms of these dimensionless
variables as follows:

= 75 COS T, (2)

Equations (1) and (2) are analyticaily equivalent. When the parameters and
variables in equation (2) take on values, they are pure numbers with no
associated dimensions and the same is true of the solution equatlon which
would be of the form:

Ty = f(Ry, Wy, Ty, Ts).

See Sziics (1980, pp. 275-279) for additional dlscusswn of this example and
other techniques for achieving the same results. See also Baker et al. (1973,
pp. 22-29). A closely related example can be found in Thompson and
Stewart (1986, pp. 292—294) who used forcing frequency and amplitude to

scale a forced oscillator system in dimensionless form. In this latter case, if the
forcing were treated as a control function, then the behavior of the oscillator
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would be scaled intrinsically in terms of the controls. In any of these cases,
dynamics and kinematics are made dimensionally commensurate because

dimensions are removed and no missing-dimension problem exists. Neverthe-
less, the scaling problem remains because the scale values of dimensionless’
parameters are still at issue. _

Essentially, one tailors an equation to express the dynamics most efficiently

by placing an equation in the appropriate dimensionless form so that each’

dimensionless parameter is directly responsible for a particular aspect of the
resulting behavior. Thus, the values of dimensionless parameters determine
the specific behavior exhibited by a differential equation, especially in the case
of nonlinear dynamics (Hirsch and Smale, 1974; Rosenberg, 1977; Thompson
and Stewart, 1986). In principle, the dynamics can be arranged to exhibit scale
invariance, that is, a lack of change in the form of behavior despite a change
in scale. The dimensionless parameter values and associated behavior can be
preserved over scale changes by affecting scale changes in the original dimen-
sional parameters of proportionate degrees determined by the ratios in the
dimensionless form of the equations (Mandelbrot, 1983; Schroeder, 1991;
Thompson and Stewart, 1986). In the forced mass-spring example, as b, the
damping, is changed, one would alter m, the mass, proportionately so as
to preserve the value of 73 and thus maintain the form of the behavior
exhibited by the system. Of course, k and F would also have to be altered to
preserve the values of , and s, respectively.

The problem in the majority of actual events, as known all too well by
scale engineers (Baker, Westine, and Dodge, 1973; Emori and Schuring,
1977), is that scale values along various dimensions cannot be arbitrarily
varied. The values are associated with specific materials. Some values may
occasionally be altered by substituting one material for another; however, a
material usually determines, not just one, but a collection of relevant values
along different dimensions (Baker, Westine, and Dodge, 1973, pp. 312—-322;
Emori and Schuring, 1977). So, a scale engineer will typically test a single
functional property in a small-scale model that distorts other functionally
important properties of the full-scale ship, airplane, or dam. In actual events,
all of the ratios in an equation can be preserved over scale changes only in
rare instances, and strictly never. The implication is that specific forms of
motion are associated with particular types of events occurring' at specific
scales. This is why the small-scale models used to film disasters (e.g., collaps-
ing dams, bridges, or buildings) in grade B science fiction films are usually
quite obvious. Merely filming the small-scale event at high speed and scaling
down the time leaves the trajectory forms unchanged and those forms are
distorted in the small-scale event. '

If the type of event can be recognized via the form of the behavior, then
the scaling associated with relevant dynamic parameters might be deter-
mined. Generally, only the values of dimensionless parameters might be
specified by trajectory forms. However, if recognizable circumstances (e.g.,
gravity, air resistance) were to constrain the values of dimensional parameters
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within the dimensionless ratios, then values of other dimensional parameters
might also be determined.

I have shown in this section that the kinematic specification of dynamics
is not a missing-dimension problem. The missing-dimension characterization
is a form of dualism that would render kinematics and dynamics as funda-
mentally incommensurate aspects of an event. Ultimately, this would make
kinematic specification of dynamics or of events impossible (not to mention
mechanics itself). Both dynamics and kinematics can be expressed in dimen-
sionless equations. Thus, they are entirely commensurate. Dimensions are
relevant, nevertheless, to the formulation of a dynamical model. Dimensions
are a necessary part of the bookkeeping required to proceed from law forms
and extrinsic measurement procedures to a dynamical model of an event. But
it is a mistake to reify such dimensional notation as fundamental ontological
types. The so-called fundamental dimensions (i.e., mass, length, and time) are
not fundamental. In mechanics, dimensional analysis requires three dimen-
sions, but the particular dimensions vary in different formulations (Duncan,
1953; Ipsen, 1960; Langhaar, 1951; Sedov, 1959). The more productive focus
in trying to understand the relation between kinematics and dynamics is
on the (abstract) form of events. To anticipate, kinematics corresponds, in
this qualitative perspective, to particular trajectory forms, whereas dynamics
yields an entire family of trajectories. Kinematics is relatively local, whereas
dynamics is relatively global.

Understanding Event Perception via the Qualitative Approach to
Dynamics

In the qualitative approach to nonlinear dynamics, both dynamics and kine-
matics are construed geometrically as alternative, and therefore commensu-
rate, descriptions of common underlying forms (Marmo, Saletan, Simoni, et
al,, 1985; Thompson and Stewart, 1986). The forms are described in terms of
vector fields from the perspective of dynamics, whereas from a kinematic
perspective they are described in terms of trajectories. The dynamic vectors
are tangent to the kinematic trajectories at all points.

This qualitative characterization is both the more elegant and the more
appropriate for two reasons at least.” First, a dynamic is determined by the
form of the vector field or the trajectories. A dynamic cannot be identified
with particular equations used to describe it because many different equations
can be used to describe the same dynamic dependmg on the type of coordi-
nates (Hirsch and Smale, 1974; Marmo et al,, 1985); The form of l'he vector
field or the corresponding phase-space trajectories remains the same despxte
change in coordinates.

Second, a qualitative construal of dynamics is the most natural given our
intended application in event perception (Bingham, 1987a; Kugler, 1983).
This, given as a reason for a qualitative interpretation, might seem rather
circular in this context. However, given the fact that observers do perceive
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events (i.e, what has sometimes been called an “existence proof”), together
with the fact that dynamic factors determine kinematic forms of motion and
that kinematics must provide the information allowing events to be recog-
nized, then there must be a commensurate or symmetry relation betweéen
kinematics and dynamics. To the extent that dynamic types and perceived
types of events correspond, the mapping between kinematics and dynamics
must be invertible and by definition there can be no missing-dimension
problem. The only possible solution is that provided by the qualitative
interpretation.

Events as Dynamics Coupled with Uniquity Conditions

In the linear tradition, dynamics as such is distinguished from specification
of the range of potential parameter values and other “uniquity conditions”
(Sziics, 1980). The goal in dynamics has been to generalize across events
involving different types of objects or materials. Uniquity conditions, namely
parameter values as well as initial and boundary conditions, must be specified
before solutions to linear dynamics can be derived. These uniquity conditions
have been held separate from the dynamic itself because they necessarily
restrict the generality of the description. However, the relation between
parameter values and dynamics is not so dissociable in nonlinear dynamics
because the specific forms of behavior are closely tied to the values of the
parameters. With the recognition that dynamics must be identified not with
equations, but with forms of behavior, uniquity conditions become an integral
part of the dynamics.

Only by tying strongly restricted ranges of parameter values and other
uniquity conditions to a given dynamic can we establish a correspondence
between perceptually recognizable types of events and dynamics. This means
that the formal character of dynamics must be enlarged to incorporate mathe-
matical apparatus that has not been included in the dynamics of the linear
tradition. Dynamical systems theory is based on the operations of the cal-
culus which become undefined at discontinuities in trajectories (Hirsch and
Smale, 1974; Tufillaro, Abbott, and Reilly, 1992). Some discontinuities are
merely effects of the scale of measurement and can be handled by appropri-
ately upgrading the (nonlinear) dynamics at the appropriate scale. For in-
stance, when differential equations have been used to describe the damping
of motion in an event involving viscous or kinetic friction, actual cessation
of ‘motion has occurred only in infinite time where the ‘trajectory finally
asymptotes at zero velocity. In actual events, motion ceases in relatively
brief finite time as friction transits from kinetic to static form or as a lubricat-

ing substance becomes adhesive at low shear velocities. Nevertheless, im-

proved models could capture such transitions as highly nonlinear forms of
damping,.

On the other hand, discontinuities are also produced by impacts and con-
tact between object surfaces. These are extremely common in daily events.
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The problem in this case is that the relative location of surfaces is contingent,
not determinate. Once the contingencies are established, an event does un-
fold in a determinate fashion that reflects the particular contingencies. Such
contingencies are uniquity conditions. To the extent that they are specified in

the behavior of a system, they must be included in its dynamics. This entails -

two modifications i

n dynamical systems models of actually perceived events
(Bingham, 1990). F

irst, piecewise continuous dynamical systems are required
and second, some form of Boolean logic will have to be integrated with the

calculus of smooth dynamical systems, Boolean logic is a formal means of
handling contingencies as conditionals. For instance, modeling the trajectories
in a free fall and bouncing event requires a projectile motion dynamic during
one position-dependent portion of the trajectory and an extremely stiff mass-
spring oscillatory dynamic during another. (For another example, see Thomp-
son and Stewart, 1986, pp. 291-320.) The forms of the trajectories that result
are specific both to the nature of the event as a free fall and bounce and to
the contingent height of the object above the surface with which it collides
(Muchisky and Bingham, 1992). Using Boolean logic, one tests state variables
(ie. positions or velocities) to determine when trajectories have entered
regions of the state space that have been assigned different smooth dynamics.
There are two uniquity conditions that are universal in the terrestrial sphere
but that are not usually tied to dynamics. One is temporal while the other is
spatial. Dynamics is generally isotropic with respect to both time and space.
The anisotropy (or irreversibility) of time is a well-recognized problem in the
context of linear dynamics (Prigogene, 1980; Prigogene and Stengers, 1984).
Nevertheless, for the vast majority of perceptible events, identity is not pre-
served over time reversal as revealed by Gibson in his study of reversible
vs. irreversible events (Gibson and Kaushall, 1973). In such instances, the
positive sign on the time variable must be preserved as a uniquity condition.
In the terrestrial sphere, dynamics is also spatially anisotropic because gravity
contributes as a dynamic scale factor to the form of all perceptible events
(including the activity of potential observers). Gravity establishes a definite
orientation in the terrestrial domain reflected in the resulting asymmetric
forms of events. Objects fall downward and roll down hills to come to rest in
valleys. Bingham et al. (in press) found that the perceived significance of
many kinematic forms changed when, unknown to observers, the orientation

with respect to gravity of event kinematics in displays was changed. Clearly -

in such cases, both the sign and the value of gravity must be included as
uniquity conditions intrinsic to the event dynamics. In general, any factor that
contributes to a determination of kinematic forms and the perceived signifi-
cance of those forms must be included in the dynamics used to model an
event. N _ n
The final type of uniquity condition that must.be ‘included as an inherent
part of dynamic event models are initial or boundary conditions. These are
values that determine transient states or trajectories. The focus of study in the
qualitative approach to nonlinear dynamics is usually on stable trajectories (or
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attractors).S Stable behavior corresponds to phase trajectories that do not
change radically in form with small changes in parameter values or in initial
conditions. With the appropriate changes in parameters, however, the trajec-
tories will exhibit a bifurcation, that is, a rapid transition to a new stable
behavior.

In the study of event perception, the forms of interest must include those
of transient trajectories as much as, or more than, those of stable trajectories.
All inanimate events are damped and so ultimately cycle down to point
attractors. However, once the attractor has been reached, the event is over.
The most informative states are the transients yielding optical flow. Examples
of such transients would be a branch set oscillating by the wind, a ball that
has been dropped and bounces or rolls downhill, a coin that has been dropped
and rolls and rattles to a stop. and finally, a swing oscillating until coming to
rest after having been abandoned by a child.

The forms of trajectories, transient and stable alike, can be partially classi-
fied according to attractor states. But as indicated by the examples, a more
specific classification (including perhaps the metric forms of trajectories) will
be required in event perception. Exactly what level of scaling (i.e. ratio, in-
terval, ordinal, etc.) will be required to capture the relevant qualitative char-
racteristics of kinematic forms depends both on a theoretical determination
of the qualitative properties of event kinematics that are preserved in the
mapping to optical flows and on the empirical determination of the detectable
qualitative properties of optical flow (e.g., Norman and Todd, 1992).

14.5 MAPPING FROM EVENT KINEMATICS TO OPTICAL FLOWS

If qualitative properties of an event trajectory are to provide information
allowing event identification, then those properties must map into optical
flows. What are the qualitative properties that map into optical flows? Certain
properties are bound to be preserved. For instance, discontinuities corre-
sponding to impacts will map to discontinuities in optical flows. Periodic
events will map to periodic optical flows. However, other properties will be
lost. For instance, event trajectories exhibiting different conic sections (i.e, an
elliptical curve vs. a parabola) are confused in optical flow. Spatial metrics are
lost because trajectories are scaled by viewing distance in the mapping to
optical flows. This scale transformation induces changes in trajectory shapes
because the scaling variable (ie., distance) is itself a kinematic variable and not
a constant. However (assuming an immobile point of observation) the course
of values of the scaling variable is phase-locked to the remaining kinematic
variables so that the forms in optical phase space are related to those in event phase
space by projective transformations, just as the forms of objects are related to their
imaged forms. The mapping of forms in phase space is essentially the same as
the mapping of three-dimensional object forms because the metric structure
of the time dimension in events is preserved while the spatial metric is lost in
the same way as for objects.
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To illustrate the projection of event trajectory forms into patterns of opti-
cal flow, I did a simulation of a ball rolling along a U-shaped groove from its
release until it nearly stopped moving following appropriate laws of motion.
The ball was inelastic, 0.27 m in diameter, and weighed 1kg. It rolled without
slipping along an inelastic U-shaped surface that was 1.0m high and 2.5m
wide. The event included many aspects typical of rigid-body events, including
translation along a constraint surface accomplished via rotations; harmonic
motion associated with the gravitational potential; and dissipation associated
with air resistance and surface friction. Together, these produce kinematics
typical of a damped harmonic oscillator, as shown in figure 14.2. (This can be
shown analytically; e.g., see Becker, 1954, pp- 206-207.)

Motion was confined to a vertical X-Y plane. However, the plane of mo-
tion did not lie perpendicular to the visual direction,” so this case was suffi-
ciently general. The perspective was from directly above the event looking
down, so that significant components of motion occurred both parallel and

Optic
Array

Projection

A A A
! 1 1
1 1 1
! ! ]

Rolling
Ball Event

Event
Kinematics

Figure 14.2 The kinematics of the rolling ball event and. their projection into optical flow.
Event kinematics: A plot of the ball tangential velocity, Vi-,- against the ball position along
the surface yielded a spiral as the ball’s oscillation back and forth damped out. Projection
to optics: The X component of V; mapped into a component common to all optical points
projected from the ball, represented by a single vector in the projection plane. The Y compo-
nent of V; mapped into radial inflow or outflow (i, “relative motion") as the ball moved
away from or toward the point of observation, respectively.
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perpendicular to the visual direction. A rigid-body analysis was employed.
Accordingly, translatory and rotational components of motion were sepa-
rated. Each of these components map respectively into common and relative
components in optical flow (see figure 14.2). Johansson (1950, 1973, 1976)
has shown that the visual system behaves as if decomposing optical flow into
these components. (Subsequently, I discuss the difficulties associated with an
inability to assume rigid-body motion.) E

Using orthographic projection, as shown in figure 14.2, the tangential

velocity of the ball, Vi, maps into the optics via two components, Vx and Vy.
V. perpendicular to the visual direction, maps into the optics as a vector
common to all points from the ball. Vy, parallel to the visual direction, maps
to a set of vectors organized in a radial inflow or outflow pattern depending
on the momentary approach or retreat of the ball, respectively. Thus, the
event kinematics map via components into very different aspects of the opti-
cal flow.

I simulated the event from the dynamics using numerical methods. The
simulated event duration was 12 seconds. A smoothly curved U-shaped sur-
face was approximated via a set of nine contiguous linear segments. Discon-
tinuities that appeared in the resulting trajectories reflected small collisions
at transition points between successive segments.

Kinematics of the Center of Mass: Common Translatory Motion

The motion of the center of mass corresponds to translatory motion common
to every point in the ball. We reduced the dimensionality of the translatory
event kinematics from four dimensions (XY, V,, and V,) to three by using
the tangential velocity, [V, + V,2}* = Vr. These kinematics are depicted in
figure 14.3 where the trajectory through a phase space consisting of the X
and Y position and the tangential velocity, Vy is plotted together with the X
and Y components projected orthographically on the X-Vx and Y-Vy planes
respectively. The U-shaped path was also projected on the X-Y plane.

The problem was mapping the forms on the X-Vx and Y-Vy planes into
the optics from a perspective at some distance above the event (i.. in the
Y direction). The X-Vx component mapped -via a single scaling factor, the
viewing distance Y, into a single optical component common to ‘all points
from the ball (i.e.,, divide each by Y). As shown in figure 14.4A, this compo-
nent carried the essential spiraling damped -oscillator form of the original

trajectory. However, based on this alone, the event could not be distinguished

from horizontal, planar motion produced by an oscillating air hockey puck
attached to a spring. The Y-Vy component was essential to completely cap-

ture the translatory event structure. This is an important point because in "~

recent reviews research on motion parallel to a projection plane has been

reviewed separately from research on perpendicular motion with the corre- -

sponding implication that the two components are functionally distinct, the
former being used for event perception and the latter for visually guided
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Figure 14.3 The tangential velocity trajectory of the ball plotted against X-Y position, with
the corresponding path projected on the X-Y plane. The V,-Y and V,-X components were
projected onto the respective planes.

activity (Anstis, 1986; Regan, Kaufman, and Lincoln, 1986). Clearly, this can-
not be the case.

Next I examined the projection of the Y-V, component. This did not map
directly into a single common component of the optical flow. Using a linear
approximation appropriate for the viewing distance, the form on the Y-Vy
plane could be mapped, via a single scale factor Y, into optical variables
detectable by human observers, namely image size and the rate of expan-
sion (or contraction) of the image. To achieve this mapping, I divided object
radius, 1, by viewing distance, Y, yielding image size. Taking the derivative
of image size, I computed image expansion rate as rVy/Y 2, As shown in
figure 14.4B, a plot of rate of expansion vs. image size preserved the form of
the Y-Vy phase portrait.®

The structure carried into the optics along the Y component was more
easily interpreted in a plot of expansion rate vs. X7Y. The latter is the optical
correlate of X position. This plot reproduced the form of an X-Vy plot. Tra-
jectories that were successively interspliced in figures 14.3 and 14.4B were
unfolded in figure 14.4C, revealing more plainly the trajectory that resulted
as the ball rolled up one side of the U, stopped, and rolled down again,
reaching zero Vy at the bottom of the U, rolling up the other side of the U
to a stop, and so on. The phase-locked relation between the X and Vy com-
ponents enabled this plot and reflected the fact thaf a perspective on a single
three-dimensional form (a single trajectory in X—'Y—V{-:phase space) was being
described. T

To summarize, forms associated with both X and Y components of the
center of mass trajectory were mapped successfully into forms associated
with detectable optical flow variables. Both components of motion were re-
quired to specify the translatory motion of the ball.
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Figure 14.4 (A) The V.-X component mapped into comresponding optical variable.é via
parallel projection. (B) The V,-Y component mapped into corresponding optical variables via
parallel projection. (C) A plot of V, vs. X mapped into corresponding optical variables.
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Figure 14.4 (cont.)

Rotational Motion About the Center of Mass

Next, the rotational motion of the ball must be considered. To start simply,
the rotational kinematics will be examined within a frame of reference fixed in
the ball, ignoring the translatory motion of the ball. In figure 14.5A, the ball
is shown side-on, looking along its axis of rotation. Over the course of the
event, the angular velocity of the ball about this axis, V,, varied exactly as
did the velocity of the center of mass, Vy. Multiplying V, by the perpendicu-
lar distance, L, from the axis of rotation to the ball surface yielded V,, the
instantaneous linear velocity of corresponding points on the ball surface. This
linear velocity vector was of constant magnitude for each point about the
axis of rotation within any plane parallel to the plane of motion, as shown in
figure 14.5A. Within the plane of motion through the center of the ball, L was
equal to the radius of the ball and V; was equal at each moment to Vi.
Moving out of this plane along the ball surface toward the point on the side
where the axis of rotation pierced the ball surface, Vy, shrank to zero as did L,
as shown in figure 14.5B.

As shown in figure 14.5C, when the frame of reference was changed from
the (moving) ball to the (fixed) constraint surface, V; was brought back into
consideration and V, was added to V; at each point on the ball because V¢
was common to all points on the ball. The result was that the ball axis of
rotation moved at Vy while the part of the ball in contact with the constraint
surface was (momentarily) at rest (—V, + Vy = 0) and the top of the ball
opposite this contact point moved at 2Vy (because Vi, = Vr).
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Three points in this kinematic structure are uniquely identifiable. The point
on the ball surface pierced by the axis of rotation is identifiable as the center

of a vortex of velocities.

This point has no rotational component of motion,

only the translatory component, Vr.

The points on the top

fiable as the points of maximum and minimim velocity respect

points and the gradient of ve
tion about the location of the cons'

and bottom of the ball are also unique points identi-
' ively. These
locities running between them provide informa-
traint surface relative to the ball. Along a

great circle formed by intersecting the ball surface with a plane perpendicular

to the direction of Vg and containing
follow a gradient from zero at the point o
to 2V; at the opposite point. Viewing

above, the velocity of all points a
be the Vi component of Vy as shown i

Geoffrey P. Bingham

£ contact with the constraint surface
the event from a distance directly
long the contour of the ball’s image would
n figure 14.5D, whereas points in

the axis of rotation, velocities would -

b, L T




429

the interior of the ball’s image would follow a gradient up to a velocity of
Vy + Vg at the center of the image.

The rate structures associated with the rotational motion of the ball are
qualitatively equivalent to those associated with the translatory motion of the
center of mass of the ball. Each of the velocities within the gradient along
the ball surface project to corresponding X and Y components depending
on perspective. These components would follow phase-space trajectories
identical in form to those described above for X and Y components of V.
For instance, viewing the event from a distance directly above, the velocity
components at the center of the ball's image would be Vy + Vy and Vy,
respectively, as shown in figure 14.5D and E. The form of the rate structure
associated with the Vi + Vi component is qualitatively equivalent to that of
the X-Vx plot.

To summarize, qualitative properties of the rate structure of this event
mapped successfully into optical flows via both the rotational and translatory
components of the ball's motion. ,

As will be shown subsequently, the spatial gradient of flow vectors asso-
ciated with the rotational motion provides information about the shape of the
ball (Todd and Reichel, 1989; Todd and Akerstrom, 1987). This spatial gradi-
ent in the context of the rate structure also provides information about the ball’s
relation to the constraint surface, the surface lying at the momentary point of
zero flow. The orientation of the constraint surface, in turn, provides informa-
tion about the direction of gravity which corresponds to the direction of
the constraint surface at moments when V; reaches its relative maxima along
the trajectory. For the ball to roll without slipping, the constraint surface must
always lie below the center of mass of the ball. That it does so is specified by
the way the projected velocities vary along the constraint surface.

14.5 THE DEGREES-OF-FREEDOM PROBLEM IN VISUAL EVENT
PERCEPTION

Nearly all extant analyses of “structure from motion” use the rigidity as-
sumption (e.g., Andersen, 1990; Hom, 1986; Koenderink, 1986; Koenderink
and van Doomn, 1975, 1976, 1987; Lee, 1974, 1980; Longuet-Higgins and
Prazdny, 1980; Nakayama and Loomis, 1974; Owen, 1990; Rieger, 1983;
Rieger and Lawton, 1985; Ullman, 1984; Warren, 1990; Waxman and Ullman,
1985; Zacharias, 1990). The rigidity assumption has been used because it
drastically reduces the degrees of freedom in optical flow. Using results from
analytical mechanics (Rosenberg, 1977; Whittaker, 1944), the motion of a
rigid body can be described in terms of the translation of its center of mass
combined with a rotation around that center. Alternatively, translation and
rotation relative to the point of observation can be used. In either case, the
positional degrees of freedom of the three-dimensional motion are reduced
from 3n degrees of freedom, where n is the number of distinguishable points
in the body, to 6 degrees of freedom, 3 to specify the position of the
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center of mass and 3 to describe the body’s orientation about its center. In
mechanics, additional degrees of freedom are required to specify a body’s
state of motion. The velocities (but only the velocities) corresponding to each
of the positional degrees of freedom must also be specified at some time, fo.
When these are specified together with a dynamic, the subsequent motion
of the object is determined.

Ultimately, however, the rigidity assumption is ‘untenable because it re-
quires that an observer know in advance what he or she is perceiving to be
able to perceive, ie., a rigid-body event. This is an obvious paradox. Alterna-
tively, the assumption restricts the relevant models to an unrealistically small
set of perceivable situations, excluding any sort of nonrigid event. On the
other hand, without the rigid-body assumption, the degrees of freedom re-
quired to specify the state in an event is 6n, i.e., 3 positions and 3 velocities
for each distinguishable point. Depending on how one distinguishes points
on an object surface (with the projection to optics in mind), this number
grows indefinitely large fast. Furthermore, the problem projects right into the
optics despite both the loss of points via occlusion by opaque surfaces and
the reduction to a total of four coordinates for each point in the optical flow
(2 positions and 2 corresponding velocities). »

The nature and severity of this problem will be conveyed by retuming to
the rolling ball example. The kinematics of the event were described in spher-
ical coordinates with the origin fixed at an unmoving point of observation
located about 2.5 m from the event. The trajectories of a mere 12 points on
the surface of the ball were selected for study, 4 points at 90-degree intervals
around the ball in each of three planes parallel to the plane of motion, one
plane at the center coincident with the plane of motion and one plane to
cither side at 70% of the distance from the center to the side of the ball. In
other respects, the simulation was the same as described earlier, including
the duration, which was 12 seconds. The resulting event trajectories were
projected into optical flow.

The optical flow trajectories were captured in a three-dimensional optical
phase space by using 0 and ¢ position coordinates together with the tangen-
tial velocity to the optical path or orbit. 6 and ¢ are visual angles in 2 polar
projection appropriate for viewing at nearer distances. Only components per-
pendicular to the visual direction at each point in the event projected into the
optics, each scaled by the distance along the visual direction. However, as the
ball rolled, each point on its surface successively went out of view as it rolled
underneath the ball and then into view as it rolled over the top of the ball.
The result was that only discontinuous pieces of trajectories appeared in the
optical flow, including only those portions of the trajectories that were not
occluded by the ball itself. The optical phase portrait appears in figure 14.0.

If we were able to count only single trajectories associated with each of the
12 points on the ball, then the number of degrees of freedom would be
12 X 4 coordinates = 48. However, as can be seen in figure 14.6, it is not
obvious how the various trajectory pieces go together. The trajectories are
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Figure 14.6 An optical phase-space portrait of the ball rolling event. Trajectories correspond
to 12 points around the ball surface, 4 around the midline, and 4 around a point to either side
of the midline. Tangential optical velocities plotted against two optical {angular) position
coordinates, theta and phi. The phi-axis was rescaled relative to the theta-axis to better reveal
the structure in the trajectories.

not piecewise continuous. The pieces are separated by significant intervals.
Thus, the degrees of freedom in optical phase space had better be enumerated
by counting the degrees of freedom associated with each trajectory piece.
The 12 points moving over 12 seconds yielded 244 trajectory pieces, each
requiring ultimately 4 coordinates which I reduced to 3 using the tangential
velocity, with 244 x 3 = 732 degrees of freedom resulting! This was from a
mere 12 points on the ball. The distinguishable optical texture elements on
such a surface could easily yield more than 1000 points resulting in over
45,000 degrees of freedom.

Solving the Degrees-of-Freedom Problem via Symmetries in Optical
Phase Space

Recall the description of the rolling ball example with which T began this
chapter. The observer is confronted with a random array of moving patches
each of which appears, moves a modest distance in the display, and then
disappears (perhaps never to be seen again). Despite the apparent complexity
and difficulties of this display, observers immediately perceive the display as
of a rolling ball. How is this possible? With the denial of the rigid-motion
assumption, we arrive at the unmitigated problem of visual event identifica-
tion. How is the tremendous number of degrees of freedom associated with
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the trajectories in optical flow reduced to the relatively few degrees of free-
dom associated with the coherent and well-formed motions in recognizable
events? The effect of occlusion combines with the degrees-of-freedom prob-
lem to exacerbate the problem by orders of magnitude. Resort must be made
to time-extended samples of optical flow to find enough structure to solve
the identification problem. (T ime-extended trajectories also yield stability of
the optical structure in response to perturbation by noisy ‘measurements.) The
strategy will be to find symmetries among the trajectories in the phase plane
portrait and to use them effectively to collapse the structure, reducing the
degrees of freedom and, at the same time, obtaining coherence and revealing
the underlying form.°

A glance at figure 14.6 reveals that the phase trajectories contain a number
of symmetries (i.e., commonalities of form) that might be used to reduce the
degrees of freedom in the optical flow. For instance, the spiral on the phase
plane, characteristic of damped oscillatory events, can be seen in common
across the three sampled planes of motion, although this form becomes rather
lost among the overlapping trajectory pieces past the first cycle. In an earlier
section of this chapter, the optical flow from the rolling ball was described
using properties such as the contour of the ball's image and the centroid of
the image. The advantage in deriving trajectories from these image properties
was that the issue of occlusion was avoided, ie., the resulting trajectories
were continuous.

To illustrate this, the flow at 5 points in the ball’s image was computed
including the centroid as well as the front, back, and opposite side points on
the contour relative to the common direction of motion. The resulting optical
trajectories were plotted in figure 14.6 where the spiraling forms of the tra-
jectories could be seen much more dlearly, as could the symmetries among
the trajectories. The continuous trajectories in figure 14.7 certainly represent
a reduction in the degrees of freedom from those in figure 14.6.

Note that in a patch-light display there is no closed, continuous contour
forming the boundary of the ball’s image. There is only a random array of
moving patches yielding trajectories, as in figure 14.6. The event is neverthe-
less identifiable. The question, therefore, is how might we derive the coherent
trajectories in figure 14.7 from those in figure 14.67 To solve this question,
we need to examine the structure of the trajectories appearing in figure 14.6
more closely. Figure 14.8A shows the trajectories projected from the 4 points
around the middle of the ball. The highly structured character of the phase
portrait is quite apparent in this figure. Each separate trajectory piece or hoop
corresponds to the motion of a single point on the ball as it rises up from the
back over the top of the ball and disappears in the front. The variations in 6
distances between the ends of each hoop in tumn correspond to the variations
in image size. The rounded form of the hoops is related to the rotation of the
ball. The rounded trajectory form is created as the rotational velocity compo-
nent is progressively added in and then removed as a point travels from the
back over the top to the front of the ball. This first symmetry is common to
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Figure 14.7 An optical phase portrait derived by tracking 4 points on the ball image con-
tour plus the point in the center of the image. The points on the contour were points front and
back on the midline and side points farthest from the midline. The paths of motion of these
points were projected onto the theta-phi plane.

the trajectories in every plane parallel to the plane of motion and will ulti-
mately allow us to collapse the trajectories in all the planes down to those in
one plane, for instance that in figure 14.8A. But first, we should analyze the
structure in that plane.

The most important symmetry is the envelope surrounding the train of
successive hoops. This provides the means of deriving the trajectories of
figure 14.7 from those of figure 14.6. As can be seen in figure 14.8B, where [
have plotted one cycle of the motion, the trajectories from figure 14.7 form
the boundary on the envelope of trajectory pieces from figure 14.6. The
bottom ends of the hoops correspond to the front and back occluding con-
tours of the ball’s image. The trajectories of these contour points are implicit,
yet apparent in the flow from a mere 4 points. If the trajectories of more
points were to be included, the contour trajectories would be more densely

. specified. The same is true of the image centroid, although in that case it is

the apex of successive hoops that is involved.
An alternative and natural coordinate system in which to capture these

trajectories is in terms of a phase angle and an energy-related measure of

radial distance which I will call “energy.” These are polar coordinates.on the
0-by-tangential velocity plane (i.e., the plane in figure 14.8A and B) with the

origin in the center of the spiral.'® Thus, these coordinates are intrinsic to:

the phase portrait. They are determined by landmarks on the trajectories
themselves, namely, the points of peak and zero velocity. As implied by the
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Time (sec)

Figure 14.8 (A) Trajectories from 4 points around the midline of the ball. The 4 points in
turn are represented by open circles, filled circles, open squares, and filled squares, respectively.
Note that without these symbols, it would be impossible to determine which trajectory pieces
represent a given point in common. (B) One cycle from the trajectories in figure 14.6A
together (open circles) with midline trajectories from figure 14.5. The contour point on the
front of the ball is represented by filled squares; the back of the ball by filled triangles, and
the center of the ball image by filled circles. (C) The energies for all of the trajectories from
figure 14.9A and B plotted against time. Open circles represent the 4 points tracked around
the midline of the ball. Filled circles represent the center point of the ball image. Filled squares
represent contour points.

coordinate labels, these coordinates also relate directly to the underlying
dynamics.

When the trajectories in figure 14.8B were plotted in figure 14.8C as
energy vs. time, the manner in which continuous trajectories bounded the
envelope of the trajectory pieces could be seen quite clearly.

Returning to figure 14.6, I note that the properties revealed on the center
plane obtained as well on the planes to the side. This suggests the solution to
the next problem, which was to relate the motions on side planes to those on
the center plane. The three sets of trajectories were 1:1 phase-locked: This
could be seen by linearly regressing the phase angles (ie., the first-polar
coordinate) for corresponding center and side points as “parameterized” by
time. This is shown in figure 14.9A. The results were slopes near 1 (=.97 or
better), intercepts near 0 (4.002 or less) and r* = .999 in all cases. The
phase-locked relation between the center and side trajectories meant, given
the symmetry of form, that I could collapse the different sets of trajectories
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Figure 14.9 (A) Phase angle of the 4 points tracked about the ball midline linearly,,regress‘ed
on phase angles for the 4 points tracked about a line 70% of the distance from the midline to
the side of the ball. (B) Energy of the 4 points tracked about the ball midline linearly regressed
on the energies for the 8 points tracked about lines 70% of the distance from the midline to the
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side of the ball (open circles); on the energies for the contour points, both front and back (open
triangles) and side points (open squares). (C) Energies for the 4 points tracked: about the
midline (open circles), for the 4 points tracked about a line 70% of the distance to the side
(lled circles), and for a contour point on the side (x's). (D) Slopes of the regressions in B
plotted against the mean phi position for the corresponding points on the ball and fitted with
a polynomial curve. . .
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by normalizing to a common scale, e.g., rescaling by dividing in each case by
the peak energy and reducing all trajectories to a common set with a peak
energy of 1. These, in turn, could be reduced to trajectories of the same form
as the center trajectories appearing in figure 14.7.

Of course, these symmetries of form also serve to make obvious the differ-
ences in scale among the sets of trajectories. This is important because the
differences in energies (or radial lengths) is also informative. As is apparent in
figure 14.7, the sizes of the spirals decrease from those corresponding to the
middle of the ball to those at its sides. The relative heights of energies on the
center plane, on the plane 70% of the distance to the side contour point, and
at the side contour point appear in figure 14.9C plotted against time. The
energy of the center points was linearly regressed on that for corresponding
side points as parameterized by time, as well as on the energy for points on
the contour at the back. The results are shown in figure 14.9B. Center point
energy regressed on energy for side points 70% of the way to the outside
edge of the ball yielded slopes of .84 with intercepts near 0. When center
point energy was regressed on energy for the side point on the contour, the
mean slope was .52. When center point energy was regressed on energy for
the back point on the contour, the mean slope was .47. These results mean
that if T assign 1.0 to the height of the trajectories along the middle of the
ball, then the height of the trajectories 70% of the distance toward the sides
is .84, while the height of the trajectories on the side contour is .52 (and on
the back contour, .47). The relative heights of the middle trajectories, the side
point trajectories, and the side contour point trajectories were plotted in
figure 14.9D against their (mean) ¢-coordinate values respectively and fitted
with a polynomial curve. There one can see that these relative energles repre-
sent the shape of the ball.

Undoubtedly, I could find additional information in the qualitative prop-
erties of these trajectories with further analysis. These trajectories are replete
with structure that can be discovered via processes sensitive to the sym-
metries among trajectory forms. Once discovered, the symmetries enable a
reduction of the degrees of freedom and a recovery of coherent form which
relates directly to the generative dynamics.
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14.7 THE NECESSITY OF ANALYZING RATE STRUCTURES ]N
OPTICAL FLOW FOR EVENT RECOGNITION

Confronting the problems associated with the rate structures in events is not -
optional in the study of optical flow. By definition, information in optical flow -
is found in the time evolution of spatially distributed optical structure. One
can represent the spatial distribution of the instantaneous values of rate -
variables as a vector field, but such a snapshot will fail to capture structure
specific to given events.

The amount of information contained in the optical phase-space trajec-
tories for the rolling ball should be compared to that contained in the instan-
taneous optical flow field analyzed in the majority of studies on optical flow.
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Orbits corresponding to the middle and side point trajectories were projected
on the theta-phi plane in figure 14.7. That these orbits in theta-phi configura-
tion space contain considerably less information is rather apparent. The in-
stantaneous optical flow field would correspond at some arbitrary moment to
a set of 2 successive points along each orbit projected on the floor of figure
14.7 and the line drawn between the 2 points in each case. The result would
be three very short line segments. This is not quite correct, however. The
more appropriate projection would be from points along trajectories in figure
14.6. Also, a more dense set of points would be required than the 12 points
represented in figure 14.6. Nevertheless, the character of the event could not
be conveyed, no matter how dense the vector field.

Although some information about the shape of the ball can be gleaned
from the instantaneous vector field (Koenderink and van Doom, 1975, 1976,
1978; Waxman and Ullman, 1985) and the assumption of rigidity can often
be checked (Longuet-Higgins and Prazdny, 1980), the nature of the event
can only be apprehended from the information contained in time-extended
trajectories. The spatial distribution in the optical flow corresponding to the
rolling ball changed over time in nonarbitrary ways, such that any single
sample in time of the spatial distribution could not be representative of the
optical structure projected from the event. At endpoints of the trajectories,
the ball momentarily stopped moving as it reversed direction and the optical
flow field (instantaneously) ceased to exist. Along the trajectory, the point of
maximum flow varied in its relative position within the contours of the ball's
image. The flow field would not be strictly the same at any two points along
the trajectory except at the two endpoints where the flow was null.

Rather than an insufficiency of structure, optical phase portraits contain an
overabundance of structure that must be used to reduce the tremendous num-
ber of degrees of freedom associated with optical flows. The structure inheres
in the forms of trajectory pieces and in symmetries existing across those
forms. Of course, the symmetries or similarities of form must be noted to
allow their use in reducing the degrees of freedom in optical flows. We have
not ventured to describe processes instantiated in the sensory apparatus that
would effect the measurements appropriate to uncovering symmetries and
forms in optical phase space. Rather, by showing that the relevant properties
of trajectories in events map into corresponding properties of optical trajec-
tories and that such properties must be detected to recognize events, I have
developed a job description for the sensory apparatus. -
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NOTES

1. Phase-space trajectories will not be sufficient for unique characterization of all events, some
of which will require an event space, ie. phase space plus a time axis (Rosenberg, 1977). Do
not confuse this event space with an event phase space that is used in contrast to an optical
phase space. :

2. A symmetry is something that remains the same despite some change in other aspects of a
form. For instance, the shape of a circle drawn on paper remains_the same when the paper is
translated along a table top. See Shaw, Mclntyre, and Mace (1974) for a related discussion.

3. Dimensions appear in brackets in uppercase, whereas parameters or variables appear in
lowercase.

4. The study of the pendulum was instrumental to the development of dynamics (Dijksterhuis,
1961; Jammer, 1957). Pendular motion was the core event investigated by dynamicists from
Galileo, through Huygens (in particular), to Newton, and beyond. In modern nonlinear dy-
namics, the (force-driven) pendulum remains paradigmatic (Berge, Pomeau, and Vidal, 1984;
Tufillaro, Abbott, and Reilly, 1992). In historical perspective, the dynamics of the pendulum is
the epitome of dynamics.

5. Historically, it has been more productive to pursue dynamic properties as qualitative, rather
than as material entities. The problem in construing dynamics in terms of material entities is
the interpretation of forces. The essential nature of forces has been the subject of enduring
debate in mechanics (Dijksterhuis, 1961; Jammer, 1957; Mach, 1893/1960). The most widely
known phase of the debate involved the reaction to Newton's gravitational theory and “action
at a distance.” However, Galileo wrote, more than half a century earlier, of how he had elected
to abandon attempts to describe the essence of gravitational action in favor of efforts to
describe the form of trajectories in events involving gravity (Galileo, 1638/1914). The re-
nowned result was the kinematics of free fall, recognized as among the most profound achieve-
ments in science. Newton's dynamics can be interpreted as having succeeded in generalizing
Galileo's descriptions, enabling dynamicists to describe, among other things, free-fall trajec-
tories on other planets as well as on earth (Jammer, 1957; Mach, 1893/1960). To this day, our
understanding of gravity is couched in terms of geometry and the associated forms of trajec-
tories (Taylor and Wheeler, 1966), although this interpretation remains controversial. The
search for gravitational essence continues—e.g., cast as a search for gravity particles. Never-
theless, the historical precedents indicate that a focus on the form of trajectories has been a
productive approach.

6. There are different types of stability (see. e-g. Thompson and Stewart, 1986). Structural
stability refers to the stability of the form associated with stable trajectories as the dynamic
equation is perturbed by adding a new term. A simple dynamic, which is not structurally
stable, is the harmonic oscillator. This exhibits elliptical phase trajectories. When an arbitrarily
small damping term is added to the equation, the trajectories change to spirals ending in a
stable equilibrium state called a point attractor. Attractors are stable states such that all trajec-
tories within a given neighborhood, the “basin of attraction,” approach them and once near
forever remain so unless perturbed violently enough to be forced from the basin. In the study

of qualitative nonlinear dynamics, the forms of interest are the forms of the attractors, ie. the
(long-term) stable trajectories.

7. Releasing motion from the vertical plane would only introduce, in addition, an optical
component corresponding to rotation about the visual direction. This has been described using
differential operators as a curl (Koenderink and van Doomn, 1975, 1976). ’

8. Rather than the rate of image expansion and contraction, I also could have used 1/7 or
the inverse of tau (Lee, 1980). Computed as Vy/Y, this equals image expansion rate divided by
image size. Plotted against image size, this also preserved the form of the Y-Vy plot.
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9. Todd (1982) developed a similar approach which he applied instead to the configuration

space of paths or orbits. A similar use of symmetries in optics applied within a vector field
representation can be found in Lappin (1990).

10. The phase angle is derived as the arctan(tangential velocity/8) while the length of the
radius is {(tangential velocity)? 4+ 82}5. The latter is related to the mechanical energy which
equals the sum of the potential and the kinetic energy. We will call the coordinate “energy,”
although it is more properly related to the square root of the energy.

REFERENCES

Andersen, G. J. (1990). Segregation of optic flow into object and self-motion components:
foundations for a general model. In R. Warren and A. H. Wertheim (Eds.), Perception and the
control of self-motion (pp. 127—141). Hillsdale, NJ: Erlbaum.

Anstis, 5. (1986). Motion perception in the frontal plane: sensory aspects. In K. R. Bof, L.

Kaufman, and J. P. Thomas (Eds.), Handbook of perception and human performance (pp. 16:1—
127). New York: Wiley.

Baker, W. E., Westine, P. S, and Dodge, F. T. (1973), Similarity methods in engineering dynamics:
theory and practice of scale modeling. Rochelle Park, NJ: Hayden Books.

Barclay, C. D, Cutting, J. E, and Kozlowsky, L. T. (1978). Temporal and spatial factors in gait
perception that influence gender recognition. Perception and Psychophysics, 23, 145—153.

Becker, R. A. (1954). Infroduction to theoretical mechanics. New York: McGraw-Hill.

Berge, P., Pomeau, Y., and Vidal, C. (1984). Order within chass: toward a deterministic approach to
turbulence. New York: Wiley.

Bertero, M., Poggio, T. A., and Torre, V. (1988). Hl-posed problems in early vision. Proceedings
of the IEEE, 76(8), 869—889.

Bingham, G. P. (1985). Kinematic form and scaling: further investigations on the visual percep-
tion of lifted weight. Doctoral Dissertation, University of Connecticut, Storrs, CT.

Bingham, G. P. (1987a). Dynamical systems and event perception: a working paper, parts -1
Perception/ Action Review, 2(1), 4~14.

Bingham, G. P. (1987b). Kinematic form and scaling: further investigations and the visual

perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance,
13, 155-177.

Bingham, G. P. (1988). Task-specific devices and the perceptual bottleneck. Hurman Movement
Sciences, 7, 225—264.

Bingham, G. P. (1990). Physical constraints on form: investigating visual information for event
recognition and the judgment of size [unpublished].

Bingham, G. P. (1993). Scaling judgments of lifted weight: lifter size and the role of the
standard. Ecological Psychology, 5, 31-64.

Bingham, G. P., and Muchisky, M. M. (1993a). Center of mass perception and inertial frames of -
reference. Perception and Psychophysics, 54, 617-632. )

Bingham, G. P, and Muchisky, M. M. (1993b). “Center of mass perception”: affordances
as dispositions determined by dynamics. In J. M. Flach, P. Hancock, J. Caird, et al. (Eds) The
ecology of human-machine systems. Hillsdale, NJ: Erlbaum.

Bingham, G. P., Rosenblum, L. D., and Schmidt, R. C. (in press). Dynamics and the orientation

Dynamics and the Problem of Visual Event Recognition




442

of kinematic forms in visual event recognition. Journal of Experimental Psychology: Human Percep-
tion and Performance.

Bingham, G. P., Schmidt, R. C,, and Rosenblum, L. D. (1989). Hefting for a maximum distance
throw: a smart perceptual mechanism. Journal of Experimental Psychology: Human Perception and
Performance, 15, 507—528. -

Cutting, J. E. (1978). Generation of synthetic male and female walkers through manipulation of
a biomechanical invariant. Perception, 7, 393—405. ’

Cutting, J. E. (1982). Blowing in the wind: perceived structure of trees and bushes. Cognition,
12, 25—44.

Cutting, J. E., and Kozlowsky, L. T. (1977). Recognizing friends by their walk: gait perception
without familiarity cues. Bulletin of the Psychonomic Society, 9, 333—356.

Cutting, J. E., Proffitt, D. R., and Kozlowsky, L. T. (1978). A biomechanical invariant for gait
perception. Journal of Experimental Psychology: Human Perception and Performance, 4, 357~372.

Dewey, J., and Bentley, A. F. (1949). Knowing and the known. Boston: Beacon.

Dijksterhuis, E. J. (1961). The mechanization of the world picture. Princeton, NJ: Princeton Univer-
sity Press.

Duncan, W. J. (1953). Physical similarity and dimensional analysis. London: Edward Amold.

Duncker, K. (1929/1950). Induced motion. In W. D. Ellis (Ed.), A source book of Gestalt psychol-
ogy (pp. 161-172). New York: Humanities Press.

Eagleson, R. (1987). Estimating 3D motion parameters from the changing responses of 2D
bandpass spatial frequency filters. In IEEE Montreal Technologies Conference: Compint ‘87,
(pp- 102—105). Montreal: [EEE.

Emori, R. I, and Schuring, D. J. (1977). Scale models in engineering: fundamentals and applications.
New York: Pergamon Press.

Fieandt, K., and Gibson, J. J. (1959). The sensitivity of the eye to two kinds of continuous
transformation of shadow pattern. Journal of Experimental Psychology, 57, 344—347.

Frykholm, G. (1983). Action, intention, gender, identity, perceived from body movement. Uppsala,
Sweden: University of Uppsala.

Galileo, G. (1638/1914). Dialogues concerning two new sciences. New York: Dover.
Gibson, . J. (1950). The perception of the visual world. Boston: Houghton Mifflin.

Gibson, J. J. (1955). The optical expansion pattern in aerial locomotion. American Journal of
Psychology, 68, 480—484.

Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. British
Journal of Psychology, 49, 182—192.

" Gibson, J. . (1961). Ecological optics. Vision Research, 1, 253—262.

Gibson, J. ]. (1962). Observations on active touch, Psychological Review, 69, 477—491.
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

Gibson, E. J., Gibson, J. J.. Smith, O. W., et al. (1959). Motion parallax as a determinant of
perceived depth. Journal of Experimental Psychology, 58(1), 40-51.

Gibson, ]. ], Kaplan, G., Reynolds, H., et al. (1969). The change from visible to invisible: A
study of optical transitions, Perception and Psychophysics, 5, 113—116.

Geoffrey P. Bingham




p-
ce
nd

of

ion

gait

o~

ver-

chol-

f2D
‘87,

tions.

wuous

mal of

British

inant of

isible: A

443

Gibson, J. ], and Kaushall, P. (1973). Reversible and irreversible events (motion picture). State
College, PA: Psychological Cinema Register.

Hildreth, E. C. (1984). The computation of the velocity field. Proceedings of the Royal Society of
London, Series B, 221, 189—2.20.

Hildreth, E. C., and Grzywacz, N. M. (1986). The incremental rigidity scheme for recovering
structure from motion: position versus velocity based information. In-Proceedings of the IEEE
Computer Society Workshop on Motion (pp. 137-143). IEEE Computer Society. :

Hildreth, E. C., and Hollerbach, J. M. (1987). The computational approach to vision and motor
control. In F. Plum (ed.), Handbook of Physiology Vol. V, section 1. New York: Oxford Univer-
sity Press.

Hildreth, E. C., and Koch, C. (1987). The analysis of visual motion: from computational theory
to neuronal mechanisms. Annual Review of Neuroscience, 10, 477—533.

Hirsch, M. W., and Smale, S. (1974). Differential equations, dynamical systems, and linear algebra.
New York: Academic Press.

Hom, B. K. P. (1986). Robo vision. Cambridge, MA: MIT Press.
Hume, D. (1739/1978). A freatise on human nature. Oxford, England: Oxford University Press.
Ipsen, E. C. (1960). Units, dimensions and dimensionless numbers. New York: McGraw-Hill.

Jacobson, L., and Wechsler, H. (1987). Derivation of optical flow using a spatiotemporal-
frequency approach. Computer Vision, Graphics, and Image Processing, 38, 29—65.

Jammer, M. (1957). Concepts of force: a study in the fi dations of dynamics. Cambridge, MA:
Harvard University Press.

Jansson, G., and Johansson, G. (1973). Visual perception of bending motion. Perception, 2,
321-326.

Jansson, G., and Runeson, S. (1977). Perceived bending motions from a quadrangle changing
form. Perception, 6, 595—600.

Johansson, G. (1950). Configurations in event perception. Uppsala, Sweden: Almgquist & Wiksell.

Johansson, G. (1964). Perception of motion and changing form. Scandinavian Journal of Psychol-
ogy. 5, 181—208.

Johansson, G. (1973). Visual perception of biological motion and a model for its analysis.
Perception and Psychophysics, 14, 201-211.

Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion percep-
tion. Psychological Research, 38, 379—393.

johansson, G. (1985). About visual event perception. In W. H. Warren and R. E. Shaw (Eds.),
Persistence and Change: Proceedings of the First Infernational Conference on Event Perception. Hillsdale,
NJ: Erlbaum.

Johansson, G., and Jansson, G. (1967). The perception of free fall. Unpublished report, Depart-
ment of Psychology, University of Uppsala, Uppsala, Sweden.

Klatzky, R., Lederman, S, and Metzger, V. (1985). Identifying objects by touch: an “expert
system.” Perception and Psychophysics, 37 299—302.

Koenderink, J. J. (1986). Optic flow. Vision Research, 26, 161—180.

Koenderink, J. J.. and van Doom, A. J. (1975). Invariant éropérties of the motion parallax field
due to the movement of rigid bodies relative to an observer. Optica Acta, 22(9), 773-791.

Koenderink, J. J.. and van Doorn, A J. (1976). Local structure of movement parallax of the
plane. Journal of the Optical Society of America, Series A, 66(7), 717-723.

Dynamics and the Problem of Visual Event Recognition




444

Koenderink, J. J., and van Doomn, A. ]. (1978). How an ambulant observer can construct a
model of the environment from the geometrical structure of the visual inflow. In G. Hauske
and E. Butenandt (Eds.), Kybernetik, (pp. 224—247). Munich: Verlag.

Koenderink, J. J., and van Doom, A. J. (1987). The structure of the visual field. In W. Gattinger
and G. Dangelmayr (Eds.), The physics of structure formation: theory and simulation (pp. 68~77).
Berlin: Springer-Verlag. .

Kugler, P. N. (1983). A morphological view of information for the self-assembly of rhythmic move-
ment: a study in the similitude of natural law. Ph.D. dissertation, Department of Psychology,
University of Connecticut, Storrs. )

Langhaar, H. L. (1951). Dimensional analysis and the theory of models. New York: Wiley.

Lappin, ]. S. (1990). Perceiving the metric structure of environmental objects from motion,
self-motion and stereopsis. In R. Warren and A. H. Wertheim (Eds.), Perception and the control of
self-motion (pp. 541—-579). Hillsdale, NJ: Erlbaum.

Lederman, S., and Klatzky, R. (1987). Hand movements: a window into haptic object recogni-
tion. Cognitive Psychology, 19, 342—368.

Lee, D. N. (1974). Visual information during locomotion. In R. B. McLeod and H. L. Pick (eds.),
Studies in perception: essays in honor of . ]. Gibson. Ithaca, NY: Comell University Press.

Lee, D. N. (1980). The optic flow field: the foundation of vision. Philosophical Transactions of the
Royal Society London. Series B, 290, 169—179.

Lee, D. N, Young, D. S., Reddish, P. E,, et al. (1983). Visual timing in hitting an accelerating
ball. Quarterly Journal of Experimental Psychology, 35A, 333—346.

Longuet-Higgins, H. C., and Prazdny, K. (1980). The interpretation of a moving retinal image.
Proceedings of the Royal Society London. Series B, 208, 385—397.

Mach, E. (1893/1960). The science of mechanics: a critical and historical account of its development.
LaSalle, IL: Open Court.

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.

Mark, L., Todd, J. T., and Shaw, R. (1981). The perception of growth: a geometric analysis of
how different styles of change are distinguished. Journal of Experimental Psychology: Human
Perception and Performance, 7, 355—368.

Marmo, G., Saletan, E. J., Simoni, A., et al. (1985). Dynamical systems: a differential geometric
approach to symmetry and reduction. New York: Wiley.

Marr, D. (1982). Vision. San Fransico: Freeman.

McMahon, T. A. (1984). Muscles, reflexes, and locomotion. Princeton, NJ: Princeton University
Press.

Michotte, A. (1963). The perception of causality. London: Methuen.

Muchisky, M. M., and Bingham, G. P. (1992). Pérceiving size in events via kinematic form. In
J. Kruscke (Ed.), Proceedings of the 14th Annual Coriference of the Cognitive Science Society (pp.
1002—-1007). Hillsdale, NJ: Erlbaum.

Nagel, H.-H. (1988). Image sequences—ten (octal) years—from phenomenology towards a
theoretical foundation. Intemational Journal of Pattern Recognition and Artificial Intelligence, 2(3),
459-483. KR

Nakayama, K., and Loomis, ]. M. (1974). Optical veiqcity patterns, velocity sensitive neurons,
and space perception: a hypothesis. Perception, 3, 63—80.

Geoffrey P. Bingham




I

445

Norman, J. F. and Todd, J. T. (1992). The visual perception of 3-dimensional form. In G. A.

Carpenter and S. Grossberg (Eds.), Neural networks for vision and image processing. Cambridge,
MA: MIT Press.

Owen, D. H. (1990). Perception and control of changes in self-motion: a functional approach to
the study of information and skill. In R. Warren and A. H. Wertheim (Eds.), Perception and the
control of self-motion (pp. 289—326). Hillsdale, NJ: Erlbaum.

Pagano, C. C., and Turvey, M. T. (1993). Perceiving by dynamic touch the dlstances reachable
with irregular objects. Ecological Psychology, 5, 125—151.

Pittenger, J. B. (1985). Estimation of pendulum length from information in motion. Perception,
14, 247-256.

Pittenger, J. B. (1990). Detection of violations of the law of pendulum motion: observers’
sensitivity to the relation between period and length. Ecological Psychology, 2(1), 55-81.

Pittenger, J. B., and Shaw, R. E. (1975). Aging faces as visco-elastic events: implications for a

theory of nonrigid shape perception. Journal of Experimental Psychology: Human Percephon and
Performance, 1, 374—382.

Prazdny, K. (1980). Egomotion and relative depth map from optical flow. Biological Cybernetics,
36, 87—102.

Prigogine, L (1980). From being to becoming: time and complexity in the physical sciences. San
Fransico: Freeman.

Prigogine, 1., and Stengers, 1. (1984). Order out of chaos. Toronto: Bantam Books.

Proffitt, D. R., and Gilden, D. L. (1989). Understanding natural dynamics. Journal of Experimental
Psychology: Human Perception and Performance, 15, 384—393.

Reed, E., and Jones, R. (1982). Reasons for realism: selected essays of James ]. Gibson. Hillsdale, NJ:
Erlbaum.

Reed, E. S. (1988). James ]. Gibson and the psychology of perception. New Haven, CT: Yale
University Press.

Regan, D. M., Kaufman, L., and Lincoln, J. (1986). Motion in depth and visual acceleration. In
K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), Handbook of perception and performance: sensory
processes and perception (pp. 19/1~19/46). New York: Wiley.

Rieger, ]. H. (1983). Information in optical flows induced by curved paths of observation.
Journal of the Optical Society of America, Series A, 73(3), 339—344.

Rieger, J. H. and Lawton, D. T. (1985). Processing differential image motion. Journal of the
Optical Society of America, Series A, 2(2), 354—359.

Rosenberg, R. M. (1977). Analytical dynamics of discrete systems. New York: Plenum Press.

Runeson, S. (1977). On the visual perception of dynamic events. Uppsala, Sweden: University of
Uppsala.

Runeson, S., and Frykholm, G. (1981). Visual perception of h&ed weight. ]oumal of Experimental
Psychology: Human Perception and Performance, 7, 733—740. . ¥

Runeson, S., and Frykholm, G. (1983). Kinematic spedﬁmﬁbn o! dynamics as an informational
basis for person and action perception: expectations, gendér recognition, and deceptive inten-
tion. Journal of Experimental Psychology: General, 112, 585—615.

Runeson, S., and Vedeler, D. (1993). The indispensability of precollision kinematics in the
visual perception of relative mass. Perception and Psychophysics, 53, 617—632.

Schroeder, M. (1991). Fractals, chaos, power laws. New York: Freeman.

Dynamics and the Problem of Visual Event Recognition




446

Sedov, L. L. (1959). Similarity and dimensional methods in mechanics. New York: Academic Press.

Shaw, R. E.,, Mark, L. S., Jenkins, H., et al. (1982). A dynamic geometry for predicting growth
of gross craniofacial morphology. In Factors and mechanisms influencing bone growth (pp. 423—
431). New York: Liss.

Shaw, R. E,, McIntyre, M., and Mace, W. (1974). The role of symmetry in event perception. In
R. MacLeod and H. Pick (Eds.), Studied in perception: essays in honor of ]. ]. Gibson New York:
Comell University Press.

Shaw, R. E, and Pittenger, J. B. (1977). Perceiving the face'of change in changing faces:
implications for a theory of object perception. In R. E. Shaw and J. Bransford (Eds.), Perceiving,
acting and knowing: toward an ecological psychology Hillsdale, NJ: Erlbaum.

Shaw, R. E, and Pittenger, J. B. (1978). Perceiving change. In H. L. Pick and E. Saltzman (Eds.),
Modes of perceiving and processing information (pp. 187—204). New York: Wiley.

Shaw, R. E., Turvey, M. T., and Mace, W. M. (1981). Ecological psychology: the consequence
of a commitment to realism. In W. Weimer and D. Palermo (Eds.), Cognition and the symbolic
processes L. Hillsdale, NJ: Erlbaum.

Solomon, H. Y. (1988). Movement-produced invariants in haptic explorations: an example of a
self-organizing, information-driven, intentional system. Human Movement Science, 7, 201-224.

Sziics, E. (1980). Similitude and modelling. Amsterdam: Elsevier.
Taylor, E. F., and Wheeler, J. A. (1966). Spacetime physics. San Fransico: Freeman.

Thompson, ]. M. T., and Stewart, H. B. (1986). Nonlinear dynamics and chaos: geometrical methods
for engineers and scientists. New York: Wiley.

Todd, J. T. (1981). Visual information about moving objects. Journal of Experimental Psychology:
Huwman Perception and Performance, 7, 795—810.

Todd, J. T. (1982). Visual information about rigid and non-rigid motion: a geometric analysis.
Journal of Experimental Psychology: Human Perception and Performance, 8, 238—252.

Todd, J. T. (1983). Perception of gait. Journal of Experimental Psychology: Human Perception and
Performance, 9, 31—42.

Todd, J. T., and Akerstrom, R. A. (1987). Perception of three-dimensional form from pattern of

optical texture. Journal of Experimental Psychology: Human Perception and Performance, 13, 242—
255.

Todd, J. T., Mark, L. S., Shaw, R. E, et al. (1980). The perception of human growth. Scientific
American, 242, 106—114.

Todd, J. T. and Reichel, F. D. (1989). Ordinal structure in the visual perception and cognition
of smoothly curved surfaces. Psychological Review, 96, 643—657.

Todd, J. T., and Warren, W. H. (1982). Visual perception of relative mass in dynamic events.
Perception, 11, 325—335.

Tufillaro, N. B,, Abbott, T., and Reilly, J. (1992).-An e.rpenmental approach to nonlinear dynamics
and chaos. Redwood City, CA: Addison-Wesley. *

Turvey, M. T., Shaw, R. E, Mace, W. M., et a_L (1981). Ecological laws of perceiving and
acting: in reply to Fodor and Pylyshyn (1981). Cognition, 9, 237—304.

Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.

Ullman, S. (1984). Maximizing rigidity: the incremental recovery of 3-D structure from rigid
and nonrigid motion. Perception, 13, 255—274.

Geoffrey P. Bingham




mic Press.
g 8r
(pp. 423

ception. In
Jew York:

3ing faces:
Perceiving,

man (Eds.),

ansequence
*he symbolic

xample of a
.201-224.

+cal methods
! Psychology:
ric analvsis.
srception and

T pattem of
ce, 13, 242—

vth. Scientific
1d cognition
amic events.
1ear dynamics

rceiving and

re from rigid

447

Verri, A., and Poggio, T. (1987). Against quantitative optical flow. In First Intemational Confer-
ence on Computer Vision (pp. 171-180). London: IEEE.

Verri, A., and Poggio, T. (1989). Motion field and optical flow: qualitative properties. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(S), 490—498. '

Wallach, H, and O'Connell, D. N. (1953). The kinetic depth effect. Journal of Experimental
Psychology, 45, 205—217.

Warren, R. (1990). Preliminary quesfions for the study of egomotion. In R. Warren and A. H.
Wertheim (Eds.), Perception and the control of self-motion (pp. 3—32). Hillsdale, NJ: Erlbaum.

Warren, W. H,, Kim, E. E, and Husney, R. (1987). The way the ball bounces: visual and
auditory perception of elasticity and control of the bounce pass. Perception, 16, 309—336.

Warren, W. H., and Shaw, R. E. (1985). Event and encounters as units for analysis for ecological

psychology. In W. H. Warren and R. E. Shaw (Eds.), Persistence and change (pp. 1-27). Hillsdale,
NJ: Erlbaum.

Watson, ]. S., Banks, M. S., von Hofsten, C., et al. (1992). Gravity as a monocular cue for
perception of absolute distance and/or size. Perception, 21, 69—76.

Waxman, A. M., and Ullman, S. (1985). Surface structure and three-dimensional motion from
image flow. The International Journal of Robotics Research, 4(3), 72—94.

Whittaker, E. T. A. (1944). A treatise on the analytical dynamics of particles and rigid bodies. New
York: Dover.

Zacharias, G. L. (1990). An estimation/control model of egomotion. In R. Warren and A. H.
Wertheim (Eds.), Perception and the control of self-motion (pp. 425—459). Hillsdale, NJ: Erlbaum.

Guide to Further Reading

A good genera! introduction to event perception is Warren and Shaw (1985). This anthology
contains papers by researchers in the various sensory modalities and subspecialities (e.g., devel-
opment, action, cognition, and language, as well as vision) and includes a review by Johansson.
Michotte (1963) is the classic work on the perception of causality. An influential and very
enjoyable introduction to scaling is Thompson (1961), while the most useful recent text is
Sziics (1980). Schroeder (1991) ranges widely over applications in various sciences, including
psychology. For introductory works on ecological psychology. no books are more readable or
more worth rereading than Gibson (1966, 1979). Reed (1988) traces Gibson’s intellectual de-
velopment and places his ideas in historical perspective. There are now many works available
on nonlinear dynamics. Thompson and Stewart (1986) remains the most readable, yet fairly
thorough introduction. Rosenberg (1977) is a good presentation of classical mechanics with a
treatment of the various spaces in which events might be represented. Marmo, Saletan, Simoni,
et al. (1985) provide the best overview of the strictly qualitative approach to dynamics. This
work is rather technically demanding, but still readable. A useful general introduction to the
mathematics of form is Lord and Wilson (1986). For a slightly.:more technical introduction
to optical flow than Gibson (1979) or Reed (1988), see Nalwa (1993). For the full dose, see
Hom (1986). Norman and Todd (1992) is also a good brief introduction to more advanced
topics. Cutting (1986) provides a useful introduction to optids.

Cutting, . E. (1986). Perception with an eye for motion. Cambridgé, MA: MIT Press.
Gibson, J. J. (1966). The senses considered as perceptual syst;;nsB;stor: Houghton Mifflin.
Gibson, J. J. (1979). The ecological approach to visual perception. Hillsdale, N.J.: Erlbaum.
Horn, B. K. P. (1986). Robot vision. Cambridge, MA: MIT Press.

Dynamics and the Problem of Visual Event Recognition




448

Lord, E. A., and Wilson, C. B. (1986). The mathematical description of shape and form. New York: ‘-
Wiley.

Marmo, G., Saletan, E. J., Simoni, A., et al. (1985). Dynamical systems: a differential geometric 1
approach to symmetry and reduction. New York: Wiley.

Michotte, A. (1963). The perception of causality. London: Methuen.
Nalwa, V. S. (1993). A guided tour of computer vision. Reading, MA: Addison-Wesley.

Norman, J. F., and Todd, J. T. (1992). The visual perception of 3-dimensional form. In G, A,
Carpenter and S. Grossberg (Eds.), Neural networks for vision and image processing. Cambndgc'
MA: MIT Press.

Reed, E. S. (1988). James ]. Gibson and the psychology of perception. New Haven, CT: Yale
University Press.

Rosenberg, R. M. (1977). Analytical dynamics of discrete systems. New York: Plenum.
Schroeder, M. (1991). Fractals, chaos, power laws. New-York: Freeman.
Sziics, E. (1980). Similitude and modelling. Amsterdam: Elsevier.

Thompson, D. W. (1961). On growth and form. Cambridge, England: Cambridge Umv :
Press.

Thompson, J. M. T., and Stewart, H. B. (1986). Nonlinear dynamics and chaos: geometrical methods
for engineers and scientists. New York: Wiley.

Warren, W. H., and Shaw, R. E. (1985). Persistence and change. Hillsdale, NJ: Erlbaum.

Geoffrey P. Bingham




Mind as Motion

Explorations in the Dynamics of Cognition

edited by Robert F. Port and Timothy van Gelder

a5

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England




