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Task dynamics corresponding to rhythmic movements emerge from interactions among dynam- 
ical resources composed of the musculature, the link segments, and the nervous and circulatory 
systems. This article investigated whether perturbations of interlimb coordination might be 
effected over circulatory and nervous dements. Stiffness of wrist-pendulums oscillated at a 
common tempo and at 180* relative phase was perturbed through the use of tonic activity about 
an ankle. Left and right stiffnesses, the common period, and the phase relation all changed. 
Stiffnesses increased with ankle torque in proportion to the wrist's inertial load. Despite different 
changes in stiffness at the two wrists, isoehrony was preserved. The stability was shown to be 
consistent with the proportionality of changes in stiffness to the inertial loads. The phase departed 
from antiphase in proportion to the asymmetry of inertial loads. The size of departures decreased 
with increasing ankle torque. An account was developed in terms of muscular, circulatory, and 
nervous functions. 

To perform familiar tasks, like patting a cat, pumping up a 
tire, scratching an itch, or walking the dog. the human action 
system assembles coordinated rhythmic movements from a 
profusion of resources composed of the musculature, the 
jointed link segments of the skeleton, and the myriad elements 
of the nervous and circulatory systems. Each of the compo- 
nents used has a particular nonlinear dynamic. From complex 
interactions among these dynamical resources emerges the 
coherent, low-dimensional task dynamics corresponding to 
the rhythmic movements themselves (Kugler & Turvey, 1987; 
Saltzman & Kelso, 1986). Although the functionally pre- 
scribed task dynamic can be observed and measured directly, 
the resource dynamics used to assemble it can, with few 
exceptions, be evaluated only indirectly (Bingham, 1988). In 
this article, we investigate interactions that originate in re- 
source-dynamic components that have not been considered 
traditionally as constraining movement organization. We con- 
sider whether and how the circulatory system (as well as the 
nervous system) might constrain interlimb coordination. 
Might perturbations be effected over distances mediated only 
by circulatory and nervous elements? By using tonic activity 
about an ankle, we perturbed the task dynamics correspond- 
ing to coordinated rhythmic movements about the wrists. 

Intralimb Interactions 

Studies of coordination focus predominantly on the timing 
or phasing of joint activity. Interactions among moving joints 
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place strong constraints on possible timing relations. Intra- 
limb joint motions can interact because of properties of the 
link segments as well as of the muscles (Aleshinsky, 1986; 
Bingham, 1988; Whiting, 1984). Link-segment motions 
around a given joint give rise to reaction torques that affect 
motions at other joints in the chain (Brady, Hollerbach, 
Johnson, Lozano-Perez, & Mason, 1982; Hollerbach & Flash, 
1982; Saltzman, 1979). Furthermore, angular positions at 
more distal joints determine effective inertial properties for 
segments joining at more proximal joints (Hogan, 1985; 
Saltzman, 1979). Finally, biarticular muscles can produce 
energy flows between joints and allow positions at one joint 
to affect torques generated at another (Bobbert, 1988; Van 
Ingen Schenau, 1989). 

Producing a prescribed movement by controlling applied 
torques at the joints so as to counteract interactions is a 
difficult problem. The problem grows in complexity as the 
number of degrees of freedom associated with the joints used 
increases (Whiting, 1984). In addition, such organization 
would be very inefficient in the use of energy. Energy origi- 
nally generated through applied torques is wasted in reaction 
torques, whereas additional energy is consumed in actively 
resisting reaction torques. Inspired by these observations, 
Nicholas Bernstein hypothesized that movement is so orga- 
nized that it takes advantage of the interactions that arise 
(Whiting, 1984). In fact, many motor achievements are pos- 
sible only because interactions are used to develop sufficient 
energy for the act (Aleshinsky, 1986; Bingham, 1988; Bobbert, 
1988; Van Ingen Schenau, 1989). This is true, for instance, 
of overhand throwing, which entails a flow of mechanical 
energy over the link segments from the trunk to the hand 
(Bingham, Schmidt, & Rosenblum, 1989; Jtris, van Muyen, 
Van Ingen Schenau, & Kemper, 1985). 

Bernstein's perspective has led to a program for the study 
of motor organization in terms of coordinative structures or 
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task dynamics (Bingham, 1988; Kelso, Tuller, Bateson, & 
Fowler, 1984; Kugler, Kelso, & Turvey, 1980; Saltzman & 
Kelso, 1986; Turvey, 1977; Turvey, Shaw, & Mace, 1978; 
Whiting, 1984). This approach construes actions as performed 
through controllable higher order functional units that are 
assembled from link-segment, muscular, nervous, and circu- 
latory components. The functionally coherent structure to be 
controlled in performance is hypothesized to emerge from 
interactions of components that are known to be nonlinear. 
The approach partitions the original problem of control into 
two problems (Bingham, 1988). The first is the problem of 
assembly. How are nervous, circulatory, muscular, and link- 
segment components organized into a unitary, stable, and 
suitable task-specific structure? The second problem is the 
problem of control. How are the appropriate control param- 
eters discovered and used? Because a controllable structure is 
a prerequisite for control, the problem of assembly takes 
precedence. 

The emphasis in this approach to motor organization falls 
naturally on interactions among assembled components, be- 
cause the functionally coherent and effective organization of 
interest is hypothesized to emerge from such interactions. 
Interactions undoubtedly play a role in intralimb movement 
because of flows of mechanical energy that occur along the 
contiguous connected elements of a link chain. What inter- 
actions might arise to constrain organization in interlimb 
coordination? 

Inter l imb Interactions 

Link-segment interactions are sometimes relevant in the 
context of interlimb coordination. In tasks like overhand 
throwing or running, the energy flows used to develop suffi- 
cient energy for the task mean that joint motions in one limb 
affect those in another. In the absence of such energy flows, 
however, the only possible sources of interaction are the 
nervous and circulatory systems. 

The existence of constraints on possible interlimb coordi- 
nations is obvious to anyone who has tried to tap in 3/4 time 
with one hand and in 4/4 time with the other. The possible 
coordinative modes are limited (Beek, 1989). Kelso and his 
colleagues have studied stable modes of coordination in bi- 
manual activity (Kelso, 1984; Kelso, Scholz, & Schrner, 1986; 
Kelso, Schrner, Scholz, & Haken, 1987; Scholz, Kelso, & 
Schrner, 1987). They have found that stable phase relations 
for isochronous rhythmic movements change from either 
inphase or antiphase to only antiphase with increasing fre- 
quency. However, where the constraints on these phase rela- 
tions originate is not yet clear. 

Observed phase relations have often been ascribed to timing 
properties intrinsic to the nervous system (Grillner, 1981; 
Kopell, 1988; Rand, Cohen, & Holmes, 1988; Stein, 1976). 
The hypothetical origins of timing in the nervous system vary 
from single element generators to nonlinear networks. In all 
cases, neural timing is imposed on concurrent activity in 
different limbs. An alternative but not mutually exclusive 
account has focused on responses of the musculature in 
different limbs to homogeneous neural input (Rosenblum & 
Turvey, 1988). In this case, phase relations would originate 

from the response time of the musculature in the face of 
different force requirements. The muscle property has been 
invoked as a determinant factor in coordination, combined 
with a lack of correction or differential modulation by the 
nervous system. 

Both of these accounts only require a flow of activity from 
the nervous system to the muscles. No flow in the reverse 
direction is entailed. Thus, there is no suggestion in either 
instance that the specific activity at a joint might directly 
influence activity at a joint in another limb. Nevertheless, 
there are reasons to expect this possibility. With respect to the 
nervous system, activity at the periphery can determine, 
through afferents, tonic levels of activity in the spine and 
brain that, in turn, can influence activity in other peripheral 
areas (Arshavsky, Gelfand, & Orlovsky, 1986). With respect 
to the circulatory system, activity in a muscle can affect the 
level of heart activity, which, in turn, can influence activity 
in other muscles (Hollander & Bouman, 1975; Laughlin & 
Armstrong, 1985). These observations imply that the level of 
activity in one limb might be affected directly by the specific 
level of activity in another. Because the levels of activity of 
muscles vary continuously over the course of movements, 
interactions among respective levels of activity at coordinated 
joints strongly constrain the potential forms of coordination. 
In the present research, we studied how the level of voluntary 
activity in one limb might affect rhythmic activity in another. 
Specifically, we investigated whether a steady torque exerted 
about one joint would influence simultaneous rhythmic activ- 
ity about joints in other limbs, and furthermore, whether the 
level of tonic activity would be reflected in the degree of 
change in rhythmic activity. 

In choosing the particular combination of joints, we wished 
to capture a common circumstance in daily activity. People 
often perform manual activity while standing and maintain- 
ing balance. The frequency of the activity in the upper limbs 
is typically high relative to the frequency of modulations at 
the ankles. The essential properties of this situation can be 
captured in a task that requires coordinated rhythmic activity 
about the wrists in the context of tonic activity about an 
ankle. 1 The question is, what is the effect of the perturbation, 
controlled at the ankle, on the coordination between the 
wrists? 

We used a bimanual task in which seated participants were 
asked to swing two weighted rods, held in either hand, at the 
most comfortable common tempo. The rods were oscillated 
in antiphase. The lengths of the two rods were varied. We 
selected this manual task for three reasons. First, the task has 
been studied extensively and much is known about it (Kugler 
& Turvey, 1987; Rosenblum & Turvey, 1988; Turvey, Rosen- 
blum, Schmidt, & Kugler, 1986; Turvey, Schmidt, Rosen- 

This approximation reflects a strategy in dynamical systems in 
which a dynamic is partitioned into fast and slow components (Per- 
cival & Richards, 1982; Thompson & Stewart, 1986). The slow 
components are then treated as control parameters used to perturb 
the fast dynamic. After perturbation or change in the control param- 
eters, the fast dynamic is allowed to settle and is then examined to 
discover what properties of the original behavior remain the same 
after perturbation. 
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blum, & Kugler, 1988). Second, the task entails controlled 
variation of asymmetric loadings in the two hands. This is an 
aspect common to a wide assortment of bimanual activities. 
Third, the behavior is characteristically stable and reliably 
reproduced by participants. In a number of studies, the pe- 
riods and relative phases of movement have been found to be 
highly stable within trials and reproducible over trials that 
were separated by months in some instances. 

The specific questions that we investigated were formulated 
in the context of a task-dynamic model of extant results from 
investigations of this task. 

The  Wris t -Pendulum Dynamic  

The fundamental question addressed in previous studies 
concerned observed periods. How did participants reliably 
select stable periods corresponding to the most comfortable 
tempos? Kugler and Turvey (1987) suggested that the answer 
lay in the character of the assembled task dynamic. A model 
of a task dynamic simulates trajectories observed in a given 
experimental task. The components of the model describe 
observable dynamical elements of the actor and the environ- 
ment involved in the execution of the activity. Kugler and 
Turvey modeled a single hand-held pendulum as a "simple 
pendulum" in which movement is constrained by gravity and 
an elastic stiffness. The stiffness parameter was used to rep- 
resent contributions to movement by the musculature. The 
inertial variables include both hand and pendulum masses. 
The model is shown in Figure 1. The equation for the period 
derived from the linear form of the model is as follows (Turvey 
et al., 1988): 

[ 47r2ML2 1 ./2 
* = [K-+ ~ L J  ' (1) 

where M and L are the simple pendulum mass and length, g 
is gravitational acceleration, K is the stiffness, and where M, 
L, K, a n d ,  should be subscripted R or L for the right or left 

i K 

Sg 
Figure 1. The wrist-pendulum model. (In using a torsional spring, 
we have removed a parameter [b] that appears in Turvey, Sehmidt, 
Rosenblum, & Kugler [1988] and represents the distance from the 
point of attachment of a compression spring to the axis of rotation. 
See the text for a description of the parameters.) 

hand respectively. A simple pendulum consists of a mass 
conceptualized as sitting at a point located at the end of a 
massless string. Kugler and Turvey (1987) computed the 
simple pendulum equivalent mass and length for the com- 
pound pendulum consisting of a hand and a wooden dowel 
with lead weights affixed to its end (see also Turvey et al., 
1986). 

The period of a simple pendulum is predicted by its length. 
If stiffness can be ignored (i.e., K = 0), then, according to the 
model, the period of a single hand-held pendulum swung in 
isolation would be expected to scale with simple pendulum 
length raised to the one-half power, that is, r pc Lt/2. Obser- 
vations conformed to this scaling relation confirming the 
intuition that the "most comfortable" stiffnesses should be 
close to zero, that is, letting gravity do the swinging (Kugler 
& Turvey, 1987). 

The question is, what happens when two pendulums are 
swung together at the same tempo? If the pendulums are of 
the same simple pendulum length, one might guess that the 
resulting period should be the same as that of the individual 
pendulums swung in isolation. Furthermore, if the pendulums 
are of different simple pendulum lengths, one might suppose 
that the coordinated period should lie between the periods for 
the respective pendulums in isolation. However, both of these 
expectations have been violated by observations (Kugler & 
Turvey, 1987; Turvey et al., 1986). For instance, periods for 
pendulums of equal length swung in coordination were typi- 
cally longer than the period for either pendulum swung in 
isolation. The conclusion these researchers reached was that 
varieties of period averaging can not be used to model the 
periods exhibited in coordinated movement. 

As an alternative explanation, Kugler and Turvey (1987) 
suggested that periods for pendulums swung in coordination 
should be predicted by the same relation that was used to 
predict periods for pendulums swung in isolation. However, 
Equation (1) requires values for the mass and length of a 
single simple pendulum. Their suggestion was that the sepa- 
rate hand-held pendulums be treated as if they were coupled 
rigidly into a single virtual compound pendulum. Accord- 
ingly, they used the simple pendulum masses and lengths of 
the separate pendulums to compute in each instance an 
equivalent virtual simple pendulum length (Lv) and mass 
(My). These values were used in a virtual wrist-pendulum 
model described as follows: 

[ 4~r2Mvi2 ]1/2 (2) 

= LK7 ~ ~v-----L;J ' 

where M~ = MR + ML and 

MRL~ + MLL[ 
L v -  

MRLR + MLLL" 

As before, if K, = 0, then r = [4~r2/g]'/2Lv~/2 so that ~ pc 

L 1/2, that is, period scales with virtual length to the one-half 
power. Observed departures from this scaling relation were 
attributed to nonzero values of Kv, (Turvey et al., 1988). As 
Kv grows large the effect of the (gMvL) term diminishes in 
proportion and, at limit, • = [4~-2/K,]~/2[M~L2p/2 so that 
o¢ (M~t/2L'). Thus, the value of the scaling exponent on virtual 
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length increases with increasing values of K, with an asymp- 
tote at I. Observed departures from an exponent of 1/2 
corresponded as predicted to nonzero values of K. Also, with 
nonzero K, values, M, enters the sealing with an exponent 
increasing in proportion to increasing K~ to an asymptote at 
1/2. Nevertheless, because the "most comfortable" K~ values 
were close to zero, observed periods for pendulums swung in 
coordination scaled approximately with L)/2. 

Revision and Simplification of the Model 

What is a virtual stiffness, K~? Kugler and Turvey (1987) 
described relations between the Ms and Ls for the individual 
and virtual wrist-pendulums respectively, but they did not 
describe the relation between K~ in Equation (2) and the 
stiffnesses of the separate left- and fight-hand wrist-pendu- 
lums. Because these stiffnesses represent the contribution of 
the person and his or her musculature, nervous system, and 
so on to the assembly, maintenance, coordination, and control 
of this activity, understanding their relation to the model of 
coordinated activity is of focal importance. 

A virtual stiffness would have to be assembled from the 
stiffnesses associated with the right- and left-hand wrist-pen- 
dulums represented by the correspondingly subscripted ver- 
sions of Equation (1). The movement task required that the 
two pendulums be swung with a common period, rR ffi TL = 

r. This allows us to set the right- and left-hand versions of 
Equation (1) equal to one another. With rearrangement and 
canceling of terms, this yields the following: 

MRL~ Ks + gMRLR 
ML--~L -- gg  "6 gMLLL" (3) 

In words, if the two wrist-pendulums are to run at a common 
period, then the ratio of their summed harmonic terms, elastic 
and gravitational, must equal the ratio of their inertias. If 
both stiffnesses, Ks and KL, equal zero, this equation tells us 
that the two pendulums must be of the same length, which is 
just the case if two simple pendulums are to run under gravity 
alone at a common tempo within the range of motion suitably 
approximated by the linear model. (See Appendix A for a 
discussion of the adequacy of the linear approximation.) For 
equal pendulums, the stiffnesses may take on equivalent 
nonzero values. As soon as the hand-beld pendulums are of 
unequal simple pendulum lengths, Ks and KL must take on 
nonzero values. Given a value for one of the two Ks, Equation 
(3) determines the value of the remaining K. There remains 
a degree of freedom in the selection of the initial K value. 
Participants vary in their range of preferred K values, but 
reliably select values within their own preferred range (Turvey 
et al., 1988, Figure 15, p. 303). 

How do the combined stiffnesses of the right- and left-hand 
systems act together with the lengths and masses of the 
respective pendulums to determine the period of coordinated 
movement? Kugler and Turvey (1987) addressed this question 
by focusing on the lengths and masses of the pendulums and 
formulated the virtual system model in answer. With an 
alternative focus on KR and KL, we have sought a solution 
through the respective equations of motion of the two wrist- 

pendulum systems: 

MRL20R(t) + [Ks + gMRLs]0s(t) = 0, 

MLL2L0'L(t) + [KL + gMLLL]0L(t) ---- 0. (4) 

From these equations, using the task requirement of a single 
common period, we derived a single equation of motion in 
variables common to the individual systems (see Appendix 
B): 

[MsL2R "6 MLL[]0*(t) + {KR + KL 

+ g[MsLR + MLLL]}0*(t) = 0. (5) 

Integrating this equation yielded the equation for the period 
as follows: 

[~( 4~r2(MRL~ + MLL2L) ],/2 
= s kTL 7 ¥ g  LL)J " (6) 

This equation is an analytically equivalent but greatly simpli- 
fied form of Equation (2), the model for the virtual wrist- 
pendulum (when written out in terms of fight- and left-hand 
masses and lengths). Equation (6) describes how two separate 
wrist-pendulums run together at a common period. Reference 
to a single virtual system is no longer appropriate because the 
quantities that would describe the properties of a virtual 
system do not reside in this equation in a form that can be 
isolated analytically. However, L is contained in the equation 
in nonanalytic form. Thus, the equation accounts for the 
observed approximate scaling relation between r and L)/2. 
Given the analytical equivalence of Equations (2) and (6), 
they must be equivalent in accounting for the observed scaling 
relations. 

Kugler and Turvey (1987) originally had developed an 
understanding of the observed scaling between period and 
pendulum lengths and masses based on a set of empirically 
derived biological scaling constants. Turvey et al. (1988) 
rejected this approach in favor of a derivation of the scaling 
relations directly from the wrist-pendulum dynamic. Never- 
theless, Turvey et al. (1988) preserved an account in terms of 
a virtual pendulum invoking an assumed (simulated) rigid 
coupling. The current revision reveals that observed scaling 
can be attributed entirely to the wrist-pendulum dynamic at 
each of the two wrists given the task requirement of swinging 
the two pendulums at the most comfortable common tempo. 
Reference to a virtual length or to virtual mass or stiffness is 
no longer appropriate, and the notion of a rigid coupling 
between the pendulums is not required. 2 Equation (6) de- 
scribes the dependence of observed periods on pendulum 

2 Initially, we had inquired as to the relation between IL and KR 
or KL. The relation conveys the superfluity of the virtual pendulum 
analysis: I~ = [1/(MRLR + MLLL)][M,L,][Kn + KL]. To obtain 
Equation (2), Equation (6) must be multiplied by the ratio of M,L, 
to itself and by the ratio of (MRLR + MLLL) to itself, followed by 
rearrangement of terms. That is, Equation (6) must be multiplied by 
one twice. We consider the (nonanalytic) appearance of the equivalent 
simple pendulum length in Equation (6) to be coincidence. However, 
if the action system was discovered to be taking advantage of this 
approximate circumstance, this would provide a good instance of a 
smart device (Bingham, 1988; Runeson, 1977). 
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masses and lengths as well as on the stiffnesses assembled at 
the two joints. Equation (3) describes the relation between 
the left- and right-hand stiffnesses required for phase locking 
at a common period. 

Interlimb Perturbation of Stiffness 

How are the stiffnesses at the two wrist joints assembled so 
as to run the pendulums at a common period? Intrinsic 
interactions between the wrists would constrain any potential 
coordination. This leads us to consider the relation between 
the task dynamic and the component resources used to assem- 
ble it. Are the components used in the assembly of stiffness 
essentially local and restricted in their effect to the particular 
limb, or might some components having a global character 
contribute to interactive effects in the two stiffnesses? 

The way to investigate this question is to try to perturb or 
change the stiffness corresponding to rhythmic activity about 
a wrist by manipulating activity about a joint in another limb. 
Using phasic perturbations would introduce the problem of 
distinguishing the perturbation of a given dynamic from the 
assembly of a new and distinct dynamic with a new oscillatory 
regime. Resulting effects might be attributed solely to the 
dynamics of the nervous system acting to generate a new type 
of oscillatory pattern. In contrast, tonic perturbations provide 
a continuum along which perturbations may be metered 
without adding rhythmic complexity, that is, more oscillators. 
Of course, interpretation of any resulting effect will depend 
on the parameters found to mediate the perturbation. 

Using data from an experiment reported in Kugler and 
Turvey (1987), we were able to determine that the stiffness of 
the wrist-pendulum dynamic can be perturbed by tonic activ- 
ity in another limb. In that experiment, four different partic- 
ipants swung a single pendulum in one hand while squeezing 
a dynamometer in the other hand. Participants swung four 
different pendulums that varied in length and mass. They 
squeezed the dynamometer at levels equal to either 0%, 25%, 
or 50% of their maximum grip force. Kugler and Turvey 
(1987) analyzed and presented results for periods. By using 
their reported means and Equation (l), we computed the 
corresponding stiffnesses and reanalyzed their data. 

The results appear in Figure 2, where it can be seen that 
for some pendulums stiffness increased significantly with 
increasing force levels in the other hand, whereas for other 
pendulums, stiffness increased less or not at all. In a two- 
variable repeated-measures analysis of variance (ANOVA) 
performed on stiffness, with force level (0%, 25%, and 50%) 
and simple pendulum length (1-4) as variables, both force 
level, F(2, 6) = 8.80, p < .02, and simple pendulum length, 
F(3, 9) = 66.57, p < .001, were significant, as was their 
interaction, F(6, 18) = 7.54, p < .001. 

These results show that tonic perturbation of the stiffness 
of a wrist-pendulum was produced by force-generating activity 
in a different limb. However, the significant interaction indi- 
cates that the perturbation was significant for some pendu- 
lums and not others. In simple effects tests, the force level 
factor was significant at the p < .02 level or better for Pen- 
dulums 3 and 4 but not significant for Pendulums l and 2. 
What determined the extent of the effect of force level on the 

~rj 

1 2 3 4 
Pendu lum 

Figure 2. Mean stiffness values for each of four different pendulums 
at three different levels of torque exerted at the opposite hand. 
(Derived from data reported by Kugler & Turvey [1987]. Squares 
represent 0% torque; diamonds, 25% torque; triangles, 50% torque.) 

stiffness? There were two potentially relevant properties that 
varied, both increasing, across Pendulums 1--4. The first was 
the inertial load. Simple pendulum length (and hence rota- 
tional inertia [ML2]) increased from Pendulum I to 4. Second, 
the observed stiffness of the wrist-pendulums at the 0% force 
level increased from Pendulums 1 through 4. 

As expected from these observations, the amount of in- 
crease in stiffness with increases in tonic force level correlated 
with both inertial load and 0% (or unperturbed) stiffness. We 
subtracted 0% stiffnesses from corresponding 50% stiffnesses 
and regressed inertia and 0% stiffness alternatively on the 
difference scores. For inertia, the relation was significant, F(l ,  
30) = 31.18, p < .001, r 2 = .510. For 0% stiffness, the relation 
was similarly significant, F(l ,  30) = 60.84, p < .001, r 2 = 
.670. The slopes were positive and the intercepts near zero in 
both instances. Because inertial load and base stiffness co- 
varied in the design, we could not distinguish their effects. 
The regression of inertia on 0% stiffness was significant, F(1, 
30) = 369.72, p < .001, r 2 ffi .925, with a positive slope and 
near-zero intercept. 

These results shed light on the relation between task and 
resource dynamics in assembly. Force-generating activity in 
one limb affected task-dynamic stiffness in another. The clear 
implication is that between-limb interactions were mediated 
by either the nervous system or the circulatory system, or 
both. The existence of such interactions becomes especially 
important when we consider the perturbation, through ankle 
torque, of coordinated bimanual activity at the wrists. 

Would the coordination between the wrists be preserved 
despite perturbation of the respective stiffnesses by activity at 
a joint in a third limb? Examination of Equation (3) reveals 
that different stiffnesses are required for isochronous swinging 
of wrist pendulums with different inertias. If  ankle torque 
perturbation to the stiffness was proportional to the unper- 
turbed stiffness, then the isochrony of the wrist-pendulums 
would be destroyed. Once again, by using the common left- 
and right-hand period, we can set the respective equations for 
the left- and right-hand periods equal to one another. Change 
in stiffness, AK, in response to perturbation, if proportional 
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to the unperturbed stiffness, would be equivalent to aK, where 
a is the proportionality constant. However, because aKL 
would not equal aKR in general, the addition of  these factors 
to the left- and right-hand sides of  the equation would violate 
the equivalence: 

4~r2MLL~ " ] 1/') 
K L + ( a K L ) + g M L L L J  - - - - rL#rR  

[ 4" 2MR---Lt 1": 
-- K s  + (aKs)  + gMRLsJ " 

With manipulation of  terms, we derive a form comparable to 
Equation (3): 

KL+gMLLL ( a K i . ' ~  K R + g M . L R  {aKR] 
MLL, 2 + \M---~L/#  MRL~ + \M--=~/" 

The structure of  Equation (3) and hence the task=specific 
coordination would not be preserved over variations in ankle 
torque. 

However, if change in stiffness in response to ankle torque 
perturbation was proportional to the respective inertia, then 
the relation between the stiffnesses would be preserved despite 
the perturbation. If  proportional to inertia, the change in 
stiffness, AK, would be equivalent to aML 2, where again a is 
the proportionality constant: 

+  LLL {aML'q KR +  RLR {aMa q 
MLL 2 + \ ~ f  = MRL 2 + \ M ' - ~ f "  

Thus, the inertias divide out and the as cancel, leaving Equa- 
tion (3) unaltered. This means that the relation between the 
stiffnesses, and thus the coordination, would be preserved. 

However, the common period would change as a result of  
the change in stiffnesses. Changes in the period would be a 
function of  a constant, a, added to the quotient term under 
the radical in Equation (6), which with some manipulat ion 
yields 

1 [KL + KR + g(MLLL + MRLx) a ]~/2 
-- _ 4~r2(MLL2L + MRL~) + ~=~5~2j • (7) 

In our investigation, we asked two questions: (a) Is the 
wrist-pendulum coordination stable in the face of  perturba= 
tion by ankle torque, and (b) is change in the stiffness of  left- 
and right=hand wrist=pendulums proportional to the respec= 
five unperturbed stiffness or to the respective inertial load? 
We used phase-locked coordination and the relation described 
in Equation (3) to decouple variations in the inertial load of  
pendulums from the corresponding unperturbed stiffnesses of  
the wrist=pendulums. In principle, given the form of  Equation 
(3), participants could select stiffnesses that mirror respective 
variations in inertial load. In practice, however, participants 
do not perform in this manner.  We kept inertial load constant 
for the fight hand and varied it in the left hand. Three left- 
hand loads were less than the corresponding right=hand loads, 
and three were greater. We required of  participants that they 
oscillate the six resulting combinations of  pendulums in an= 
tiphase coordination at the most comfortable common 
tempo. 

M e t h o d  

Participants 

Three male graduate students at the University of Connecticut 
participated in the experiment. The participants' ages ranged from 23 
to 29 years. All participants were right handed and none had motor 
disabilities. All were moderately trained in fitness activities. 

Materials 

The hand-heid pendulums were 0.02 m diameter wooden (ash) 
rods with a rubber grip over the top end (providing a comfortable 
handle) and with weights and associated hardware attached close to 
the bottom end of the rod. This hardware consisted of a 0.006 m- 
diameter 0.05-kg metal bolt that was inserted through the rod. Alu- 
minum weights of 0.05 m diameter were secured onto this bolt using 
a number of aluminum washers and nuts (0.05 kg). The bolt, weights, 
and hardware were placed on the rod at an angle perpendicular to 
the direction of movement at 0.04 m from its lower end. A small 
metal plate (0.03 m x 0.06 m x 0.001 m; 0.01 kg) was attached at 
approximately 0.15 m from the upper (handle) end of each rod. A 
photocell was attached to these plates for recording purposes. 

A single wrist-pendulum, given the distribution of its mass in 
relation to the point of rotation, was a compound pendulum. Three 
masses, including the mass of the pendulum shaft or rod, the mass of 
the added weights, and the mass of the hand, rotated about a point 
in the wrist joint. The mass and length of the equivalent simple 
pendulum was calculated by idealizations of the mass shapes and by 
applications of the parallel axis theorem (Turvey et al., 1986). Seven 
pendulums were constructed. The pendulums consisted of six differ- 
ent left-hand pendulums and one right-hand pendulum. The simple 
pendulum masses and lengths are given in Table 1. Because the mass 
of the participant's hand enters into the computations, the pendulum 
magnitudes differ for the 3 participants. 

The apparatus used to measure the pendulum trajectories was a 
TECA-PN4 Polgon goniomcter. Polarized light from two sources 
placed 1 m to either side of the participant was picked up by four 
photocells, two for each wrist-pendulum (see Figure 3). One photocell 
was placed on a pendulum's metal plate and the other was fastened 
onto the participant's forearm with a velcro-secured metal plate. The 
photocells generated voltages proportional to the angle between them. 
The torque produced at the ankle was measured with a Cybex II 
isokinetic dynamometer with a plantar flexion--dorsitlexion footplate 
attachment. 

We recorded the voltages from the dynamometer and the goni- 
ometer for future analysis on a Tandberg series 100 4-track FM tape 
drive. Voltage output was monitored on a Tektronix 468 oscilloscope. 

Procedure 

Participants sat on a Cybex II S-D-H Excrtest table configured with 
a backrest. They were instructed to gaze straight ahead without 
looking at either wrist-pendulum. At the start of the experiment, a 
calibration trial was conducted for each hand so that an angular 
reference could be established for later use in the analyses. These 
trials consisted of a participant holding a pendulum first at 60" in 
relation to his horizontally aligned forearms (and, therefore, to the 
ground plane) and then at 90" in relation to his forearms (and 
therefore perpendicular to the ground plane). A chiropractor's goni- 
ometer was used in determining these angles. Also at the start of the 
experiment, the maximum torque that the participant could apply by 
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Table  1 
Simple Pendulum Lengths and Masses of the Wrist-Pendulum Systems 

Pendulum 

Participant Left 1 Left 2 Left 3 Left 4 Left 5 Left 6 Right 

1 
Length (m) 0.304 0.336 0.387 0.479 0.497 0.547 0.424 
Mass (kg) 0.979 0.987 1.001 1.028 1.033 1.047 1.013 

2 
Length (m) 0.312 0.342 0.392 0.484 0.502 0.552 0.429 
Mass (kg) 0.921 0.929 0.943 0.970 0.975 0.989 0.995 

3 
Length (m) 0.307 0.339 0.390 0.482 0.500 0.550 0.427 
Mass (kg) 0.921 0.929 0.943 0.970 0.975 0.989 0.955 

using the plantar flexion of the ankle joint was measured with the 
dynamometer. 

Each participant was asked to grasp the pendulum handle in such 
a way as to have complete control over the entire movement from 
the wrist; each participant was also instructed to oscillate the pendu- 
lums forward and back smoothly by using only the wrist joint (while 
keeping forearms parallel to the ground plane). The wrist-pendulums 
were oscillated in two modes: the single right-hand pendulum in 
isolation or the right-hand pendulum swung together with one of the 
six left-hand pendulums at a common tempo (1:1 frequency locking) 
at a phase relation of 180". Both modes were performed while 
participants applied each of three levels of torque by using plantar 
flexion of the ankle. These levels were 0%, 25%, and 50% of the 
participant's maximum level of torque. 

For each trial, the participant fLrSt attained and maintained the 
appropriate level of ankle torque. The participant was guided to the 
appropriate level by the experimenter, who was watching the torque 
level on the Cybex gauge as well as on the oscilloscope. Once the 
appropriate level of torque was achieved, the participant started to 
oscillate the wrist-pendulum(s). The participant was instructed to 
search, as he started swinging, through a range of possible frequencies 
until he felt that he had settled on the most comfortable, stable tempo. 
When the participant felt that a comfortable tempo had been achieved 
(typically within a few seconds), he gave a verbal signal to the 
experimenter, who then started the recording process. Each recorded 
trial lasted for 15 s. ARer each trial had been recorded, the experi- 
menter told the participant to stop swinging; a new pendulum com- 
bination was placed into the participant's hands, and a new ankle 
torque level was set for the next trial according to a predetermined 
condition ordering. Participants rested for 1 rain between trials and 
for 2 to 3 min every seven trials. In addition, participants were given 
a 15-rain rest period halfway through the experiment, during which 

they were allowed to take refreshment and walk around. The rest 
periods significantly reduced the amount of fatigue that participants 
inevitably began to experience in their legs toward the end of an 
experimental session. The participants' behavior was closely moni- 
tored throughout the experiment. An experimental session for each 
participant lasted about 3 hr. 

There were 21 conditions (seven wrist-pendulum combinations 
and three ankle torque levels), with six trials in each condition. The 
number of total trials (126) was divided into a number of blocks, 
each of which involved one trial of every condition type. Trials within 
each block were given a random ordering that was different for each 
of the three participants. The six combinations of left and right wrist- 
pendulums are referred to as wrist-pendulum systems, ordered in 
terms of the simple pendulum length of the left wrist-pendulum. 

Data Analysis 

After the data for all participants had been collected on tape, we 
transduced the recorded voltage outputs to digital form with a 
DATEL ST-PDP 12-bit analogue-to-digital converter at a sampling 
rate of 200 Hz. Programs implemented on a Macintosh II computer 
calculated cycle periods, cycle amplitudes, cycle stiffness, cycle rela- 
tive phase (of the coupled systems), and the means and standard 
deviations of these quantities for each trial. Preceding these calcula- 
tions, the data were smoothed with a 35-ms triangular window. A 
peak picking algorithm was used to determine the time of peak 
flexion and extension of the wrist-pendulum trajectories. From the 
peak extension times fin), the period of oscillation for the nth cycle 
(r,) was calculated as rn = [tn - t~-,]. From the cycle periods, the 
stiffness exhibited at the wrist was estimated as I~  = (2~rML2/rn) - 
9.81 ML, where M is the simple pendulum mass, 9.81 is the gravita- 
tional acceleration, and L is the simple pendulum length of the wrist- 
pendulum. From the peak extension (a) and flexion (#) positions, 
the angular excursion of oscillation for the ntt cycle (0n) was calcu- 
lated as 0n = [an -/~n]. The amplitude was estimated to be one half 
of the angular excursion. The relative phase for the nth cycle (~,) was 
calculated as q~ = 360[(hn - t2~)/(h~ - h~n+u)], following Yamanishi, 
Kawato, and Suzuki (1979), where In refers to the nth cycle of 
Pendulum 1, 2n refers to the nth cycle of Pendulum 2, and l(n + 1) 
is the (n + l)th cycle of Pendulum 1. The means and standard 
deviations of these quantities were found over the n cycles of a trial 
and the mean of these means over all the trials in a condition. 

Figure 3. The arrangement for a participant in the experiment. 

R e s u l t s  

The  main  focus o f  this investigation was on the effect o f  
levels o f  ankle torque on stiffness at the wrists. However ,  
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changes in stiffness were accompanied by changes in period 
as well as by changes in the relative phase relation between 
the two pendulums. Results for all three measures reflect the 
global character of components used in the assembly of the 
task-specific dynamics. 

St i f fness  

The effect on stiffness of variations both in simple pendu- 
lum length and in the amount of torque exerted about the 
ankle can be seen in Figure 4. The oppositely directed changes 
in stiffness for the two hands over increases in the left-hand 
simple pendulum length are quite apparent. In ANOVAs 
performed on the data for each participant with hand (left or 
right), ankle torque (0%, 25%, or 50%), and system (1-6) as 
variables, the Hand x System interaction was significant in 
all cases: F(5, 25) = 443.4, MSe = .107, p < .001, for 
Participant 1; F(5, 25) = 92.6, MSe = .113, p < .001, for 
Participant 2; and/7(5, 25) = 334.9, MS~ = .060, p < .001, 
for Participant 3. The three-way interaction was significant as 
well for Participant 1, F(10, 50) = 3.4, p < .002, and marginal 
for Participant 2, p < .06. Because of these interactions, we 
performed separate analyses by participant for each hand with 
ankle torque and system as variables. First, we report the 
results for the left hand, then those for the right hand. 

For the left hand, system was significant for all 3 partici- 
pants: F(5, 25) = 32.8, p < .001, for Participant 1; F(5, 25) 
-- 14.6, p < .001, for Participant 2; and F(5, 25) = 49.4, p < 
.001, for Participant 3. Left-hand stiffness increased with 
increasing left-hand simple pendulum length. Ankle torque 
was significant for Participants I and 2, but not for Participant 
3: F(2, 10) = 16.6, p < .001, for Participant 1; F(2, 10) = 9.7, 
p < .005, for Participant 2. Furthermore, the Ankle Torque 
x System interaction was significant for Participant l, F(10, 
50) = 3. l, p < .004, and marginal for Participant 2, p < .08. 
Left-hand stiffness increased with increasing levels of ankle 
torque for 2 participants. Increases were minimal or non- 
existent for shorter pendulums and increasingly strong for 
successively longer pendulums. These results replicated those 

derived from Kugler and Turvey (1987). Of 4 participants in 
that study, one showed no effect of tonic force levels from 
squeezing a dynamometer in the opposite hand, whereas the 
remaining 3 exhibited effects similar to Participants l and 2 
in the current study. 

In an ANOVA performed on the combined left-hand data 
of all 3 participants with participant as a between-subject 
variable and ankle torque and system as within-subject vari- 
ables, both the Ankle Torque x Participant interaction, F(4, 
30) = 7.2, p < .001, and the main effect for torque, F(2, 30) 
= 20.0, p < .001, were significant. In addition, though the 
three-way interaction was not significant, the Ankle Torque 
x System interaction was significant, F(10, 50) = 3.9, p < 
.00 I. Thus, the overall pattern of results for the left hand was 
increasing stiffness with increasing left-hand simple pendulum 
length and an increase in stiffness with increasing ankle torque 
for longer pendulums hut not for the shortest pendulums. 
Because these results replicate those derived from Kugler and 
Turvey (1987), we turned to the results for the right hand to 
see if we succeeded in decoupling variation in 0% stiffness 
levels from variations in inertial load. Because the same 
pendulum was always oscillated in the right hand, the inertial 
load was always the same; we hoped that the 0% stiffness level 
was not always the same. 
: For the right hand, separate ANOVAs performed on the 
data for each participant with ankle torque and system as 
variables showed that system was significant for all three 
participants: F(5, 25) = 72.0, p < .00 l, for Participant l; F(5, 
25) = 42.5, p < .001, for Participant 2; and F(5, 25) = 19.6, 
p < .00 l, for Participant 3. Although the inertial load did not 
vary in the right hand, the (unperturbed) 0% stiffness did 
vary. In contrast, with left-hand data, right-hand stiffness 
decreased with increasing length of the pendulum held in the 
left hand. Decreases in right-hand stiffness matched increases 
in left-hand stiffness, crossing at the point where left-hand 
simple pendulum length was equal to that for the right hand. 
Variations in the left-hand load perturbed the right-hand 
stiffness. We therefore succeeded in decoupling variations in 
0% stiffness from variations in inertia in the right hand. 
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Figure 4. Mean stiffness for each of six different wrist-pendulum systems at three different levels of ankle torque: Means of the data from 3 
participants. (The left- and right-hand panels contain data from the left and right hands, respectively. Squares represent 0% torque; diamonds, 
25% torque; triangles, 50% torque.) 
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Did ankle torque produce increases in right-hand stiffness? 
If so, did the size of the increases vary with the 0% stiffness 
level? The torque factor was significant for Participants 1 and 
2 but not for Participant 3: F(2, 10) = 12.2, p < .002, for 
Participant l; and F(2, 10) = 14.4, p < .001, for Participant 
2. Stiffness did increase with ankle torque. The Ankle Torque 
x System interaction was not significant in any instance (p > 
.3 or greater). The size of the increases did not vary with 0% 
stiffness level. These results are different from those for the 
left hand as well as from those of Kugler and Turvey (1987). 
The contrast is apparent in mean slopes from linear regres- 
sions that regress left-hand simple pendulum lengths on either 
left- or right-hand stiffnesses. Slopes increased for the left 
hand across torque conditions but not for the right hand. 
Mean slopes (and standard deviations) for the left-hand 0%, 
25%, and 50% torque conditions, respectively, were 7.4 (2.7), 
7.9 (3.1), and 10.2 (3.9), with mean  r2s of .542 (.209), .545 
(. 176), and .621 (.252). Corresponding mean slopes for the 
right hand were -8.4 (4.4), -8.7 (3.8), -7.8 (4.3), with mean 
r2s of .624 (. 182), .642 (.209), and .514 (.22 l). All regressions 
were significant, p < .001. These results represent the pattern 
for each participant except Participant 3, for whom left-hand 
slopes did not increase over torque conditions. 

In an ANOVA on combined right-hand stiffnesses with 
participant, ankle torque, and system as variables, once again 
both the Ankle Torque x Participant interaction, F(4, 30) = 
7.6, p < .001, and the main effect for torque, F(2, 30) = 15.6, 
p < .00 l, were significant. However, neither the Ankle Torque 
x System interaction nor the three-way interaction were 
significant, p > .5. The change in right-hand stiffness as a 
result of perturbation by ankle torque was not modulated by 
the unperturbed 0% stiffness levels. 

The right-hand pendulum was swung in isolation subject 
to the ankle torque manipulation. How did the extent of 
changes in stiffness compare when a pendulum was swung 
alone versus in coordination with another pendulum? An 
ANOVA was performed on right-hand stiffnesses for the 
single pendulum mode with participant (between-subject) and 
torque (within-subject) as variables. Participant was signifi- 
cant, F(2, 15) = 18.7, p < .001; torque was significant, F(2, 
30) = 10.6, p < .001; the interaction was not significant. The 
means across participants for the single pendulum were in- 
corporated into the graph for fight-hand data in Figure 4. The 
effect of ankle torque on the stiffness of the right-hand pen- 
dulum was larger when it was swung in isolation than when 
it was swung in coordination with a left-hand pendulum. A 
difference score was computed by subtracting 0% stiffnesses 
from corresponding 50% stiffnesses. For each participant, 
mean right-hand 50%-0% stiffnesses for each of the six trials 
was computed across the six double pendulum conditions. 
The difference between 50%-0% stiffnesses for the single 
right-hand trials and for the mean double right-hand trials 
was tested through an ANOVA with participant and mode 
(single vs. double) as variables. Only the mode variable was 
significant, F(1, 15) = 5.5, p < .03. 

Overall, increasing ankle torque resulted in increases in 
right-hand stiffness. Changes in right-hand stiffness did not 
vary with left-hand pendulum lengths as did changes in left- 

hand stiffness. Finally, greater changes in right-hand stiffness 
occurred for the isolated as opposed to coordinated swinging. 

The results for perturbation of stiffness derived from Kugler 
and Turvey (1987) did not allow us to distinguish whether 
changes in stiffness were proportional to the unperturbed 0% 
stiffness or alternatively to the inertial load on the muscula- 
ture. An intent in our study was to decouple the unperturbed 
stiffness from the inertial loads on the musculature of the left 
and right wrists. The inertial loads are represented by the fight 
and left simple pendulum lengths respectively because simple 
pendulum lengths and moments of inertia covary. Because 
the fight-hand stiffness varied with no variation in the inertial 
load of the pendulum swung in the fight hand, we succeeded 
in disassociating the two quantities. The amount of change in 
stiffness with variations in ankle torque was derived by sub- 
tracting 0% stiffnesses from 50% stiffnesses for corresponding 
trials within conditions and participants. The result of regress- 
ing unperturbed 0% stiffnesses on the difference scores for 
the three participants is shown in Figure 5. The regression 
was not significant, p > .5, and the slope was flat. The group 
result is representative of those for individual participants. 
Thus, increases in stiffness that occurred with increasing levels 
of ankle torque were not proportional to the unperturbed 
stiffness values. 

It was apparent in Figure 4 that changes in stiffness with 
increasing ankle torque were proportional to the inertial load. 
The inertial load of the right-hand pendulum fell between 
that for Systems 3 and 4 of the left hand. The relatively 
constant amount of change in stiffness across the right-hand 
systems appeared about equal to the amount of change in 
stiffness occurring between Systems 3 and 4 for the left hand. 
Thus, as can be seen in Figure 6, placing stiffness differences 
for the right hand between Systems 3 and 4 for the left hand 
produced an increasing change in stiffness in proportion to 
inertial loads as indexed by simple pendulum length. We next 
performed a sequence of analyses to establish that changes in 
stiffness in response to perturbation by ankle torque were 
proportional to the inertial load at the wrist. 

Figure 5. Changes in stiffness from the 0% to 50% ankle torque 
conditions plotted against 0% stiffness levels: Data for both hands for 
all 3 participants and all pendulum systems. (The line is the least 
squares linear regression, for which the slope can be seen to be quite 
flat.) 
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Figure 6. Mean changes in stiffness from the 0% to 50% ankle 
torque conditions computed for each pendulum and plotted by 
pendulum length. (The middle point corresponds to the pendulum 
held in the fight hand, Error bars represent the standard error.) 
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Figure 7. Mean changes in stiffness from the 0% to 50% ankle 
torque conditions computed for each hand for conditions in which 
the left pendulum was shorter than the fight and for conditions in 
which the left pendulum was longer. (Error bars represent the stand- 
ard error.) 

We performed on ANOVA on 50%-0% stiffness differences 
with order of  simple pendulum lengths (1-7) as a repeated- 
measures variable and participants as a between-subject vari- 
able. Length was significant, F(6, 12) = 3.9, p < .002; partic- 
ipant was significant, F(2, 15) = 11.1, p < .001; but the 
Length x Participant interaction was not significant. Separate 
ANOVAs performed on the data for each participant with 
length order as the variable were significant for Participants 1 
and 2: F(6, 30) = 2.9, p < .02, for Participant 1; F(6, 30) = 
2.8, p < .03, for Participant 2. 

When left pendulum lengths were regressed only on right 
50%-0% stiffness differences, the result was not significant, 
r 2 = .007, with a flat slope, y = .Tx + .05. Right-hand 
difference scores did not vary across Systems 1-6. When left 
pendulum lengths were regressed on left 50%-0% stiffness 
differences, the result was significant, r 2 = .085, p < .002, y 
-- 2.8x - .74. When left and right pendulum lengths were 
combined and regressed on left and right 50%-0% stiffness 
differences, the result was significant, r 2 = .050, p < .001, y 
= 2.8x - .78. Adding right-hand difference scores to the 
regression of length on left-hand difference scores did not 
appreciably alter the original regression results, because right- 
hand 50%-0% stiffness differences accord with the proportion 
between length and amount  of  difference exhibited by left- 
hand data. 

Finally, the mean stiffness differences for the short (Systems 
1-3) and long (Systems 4-6) pendulums were computed 
separately for the left and right hand to allow a more coarse- 
grained analysis of the effect of inertial load on changes in 
stiffness in response to perturbation by ankle torque. Each 
mean plotted in Figure 7 represents 44 difference scores. One- 
tailed unpaired t tests were performed on all combinations of  
these means. The two right means were not significantly 
different from one another. However, the long left and right 
means were significantly different, t(106) = 1.8, p < .04; the 
left long and the right short were significantly different, t(106) 
= 2.3, p < .01; and the left short and fight long difference was 
marginally significant, t(106) = 1.6, p < .06. Left short and 

fight short were not significantly different. Taken together, 
these results reveal that the right-hand mean difference scores 
are equivalent to one another but generally different from 
left-hand mean difference scores for longer and shorter pen- 
dulums. The right-hand means fall together between those for 
the left short and long. 

Our overall conclusion from this sequence of analyses is 
that changes in stiffness at the left and fight wrists in response 
to torque exerted about the ankle were proportional to the 
inertial load on the respective musculature. 

Period 

Increases in stiffness should correspond generally to de- 
creases in period; this was predominately the result we ob- 
tained. The pattern of  results for periods was not, however, 
identical to that for stiffness. The task required that partici- 
pants swing the left- and right-hand pendulums at the same 
period. One of the questions we investigated was whether 
isochrony would be preserved over changes induced in wrist 
stiffness by ankle torque. We found that changes in stiffness 
were proportional to the inertial load at the respective wrist. 
Accordingly, our model predicted that isochrony should have 
been preserved over the perturbations. 

How well did participants maintain isochrony? Mean values 
(and standard deviations) across participants for regressions 
of  left on right periods reveal a mean slope of .98 (.05), a 
mean intercept of  .03 (.06), and a mean r 2 of  .963 (.035) for 
the 0% ankle torque condition; a mean slope of .95 (.06), a 
mean intercept of  .06 (.06), and a mean r 2 of  .964 (.044) for 
the 25% ankle torque condition; and a mean slope of .95 
(.10), a mean intercept of  .06 (.12), and a mean r 2 of  .946 
(.061) for the 50% ankle torque condition. All regressions 
were significant, p < .001. These results show that participants 
succeeded in maintaining isochronous cycles in the two hands, 
as we expected. 

We performed an ANOVA on periods for all three partici- 
pants, with participant as a between-subject variable and 
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hand, ankle torque, and system as within-subject variables. 
The participant variable was significant, F(2, 15) -- 30.8, p < 
.001. Participants swung at different characteristic periods. 
Neither the main effect of hand nor any of the interactions 
with hand were significant; thus, once again the pattern of 
results for the two hands was the same. System was significant, 
F(5, 75) = 107.9, p < .001. Periods increased over Systems 
1-6, more so for some participants than others, as shown by 
the fact that the System x Participant interaction was signif- 
icant, F(10, 75) = 2.2, p < .03. Both the Ankle Torque x 
Participant interaction, F(4, 30) = 7.8, p < .001, and the 
main effect of torque, F(2, 30) -- 21.8, p < .001, were 
significant. The Torque x System interaction was significant, 
F(10, 150) = 2.6,/~ < .006, but the three-way interaction was 
not significant. Periods tended to decrease with increasing 
ankle torque, more so for Systems 4-6 and less so for Systems 
1-3. 

A separate ANOVA was performed on periods for each 
participant with hand, ankle torque, and system as variables. 
For Participant 1, system was significant, F(2, 25) -- 65.0, p 
< .001, torque was significant, F(2, 10) = 17.2, p < .001, and 
the Torque x System interaction was significant, F(I 0, 50) = 
2.0, p < .05. For Participant 2, system was significant, F(5, 
25) = 38.8, p < .001, and torque was significant, F(2, 10) -- 
19.5, p < .001. For Participant 3, only system was significant, 
F(5, 25) --- 18.2, p < .001. Periods increased over Systems 1- 
6 for all participants, getting larger for larger inertial loads. 
For Participants 1 and 2, periods decreased with increasing 
ankle torque, decreasing more for Systems 4-6. For example, 
for Participant 2 simple effects tests on torque were significant 
(p < .05 or better) for Systems 3-6 but not for Systems l and 
2. A similar pattern was obtained for Participant 1. In no 
instance was the hand variable or any of its interactions 
significant. The pattern of results, therefore, was the same for 
the left- and right-hand periods, as required for isochrony. 

We found that increases in stiffness were proportional to 
the inertia at the wrist. As described before, change in left- 
and right-hand stiffness can therefore be represented by 
aMLLL 2 and aMRLR 2, terms added to Equations (3) and (6), 
where a is the proportionality constant for a given level of 
ankle torque perturbation. Equation (7) was derived by adding 
the aforementioned terms to Equation (6) with the result that 
changes in the period in response to perturbation by ankle 
torque should be a simple function of the proportionality 
constant, a. 

To verify that changes in stiffness were proportional to 
inertia, we used Equation (7) to predict observed changes in 
period. To do this, we needed an estimate of the proportion- 
ality constant, a, for each participant at a given level of ankle 
torque. We obtained a values for the 50% ankle torque level 
by regressing, for each participant, inertia on mean 50% - 
0% stiffness differences computed for each wrist-pendulum. 
The results were as follows: Participant 1, y = 6.78x - .47, r 2 
= .788, p < .001; Participant 2, y = 4.21x - .30, r 2 = .479, p 
< .02; Participant 3, y = .97x - .  19, r 2 = .066, p > .4. These 
equations describe the relation between inertia and change in 
stiffness from the 0% to the 50% ankle torque levels. Ignoring 
the intercepts, we used these slopes as values for a. We used 
the value for Participant 3, despite the regression's not reach- 

ing the p < .05 level. Putting these values into Equation (7) 
along with respective pendulum mass and length values and 
derived K values for the 0% ankle torque condition, we 
computed predicted values for z in the 50% ankle torque 
condition. 

After computing predicted periods for the 50% ankle torque 
condition, we computed predicted and actual changes in 
period by subtracting actual 0% periods from predicted and 
actual 50% periods. Finally, we regressed 0% periods on both 
the predicted and actual changes in period. The results for 
each participant appear in Figure 8 and in Table 2, along with 
results for means computed across participants for each wrist- 
pendulum. The 0% periods for all three participants were 
regressed on both predicted and actual changes in period in a 
multiple regression, along with a vector coding for predicted 
versus actual changes and an interaction vector created by 
multiplying the first two vectors (Pedhazur, 1982). The result 
was significant, r 2 = .  180, F(3, 208) = 15.19, p < .001. Only 
0% period was significant (partial F = 10.05, p < .002). When 
the regression was redone without the interaction vector (r 2 
= .179, p < .001), both 0% period (partial F = 24.69, p < 
.001) and the coded category vector (partial F = 20.80, p < 
.001) were significant. 

Equation (7) accurately predicted the changes in period. 
Predicted changes were parallel to actual changes, with a 
consistent overestimation by about 50 ms. The overestimation 
might be attributed to our having ignored the intercepts in 
the linear relations between inertia and mean 50%-0% stiff- 
ness differences. This result strongly supports our conclusion 
that changes in wrist-pendulum stiffness, resulting from ankle 
torque perturbations, were in proportion to the inertial load- 
ings at the wrists. 

Relative Phase 

In addition to isochrony, relative phase is another measure 
of the coordination between the two wrists. Although iso- 
chrony was preserved, the phase relation might have been 
perturbed by significant levels of ankle torque. 

Rosenblum and Turvey (1988) found that the mean relative 
phase between two pendulums swung at a common tempo 
was a function of both the relative loads on the musculature 
spanning the two wrists and the period of movement. Rosen- 
blum and Turvey assumed that neural activations at the two 
wrists were phased 180* apart in accordance with the task 
instructions. Following Partridge (1966, 1967, 1979), they 
suggested that observed deviations from a strict antiphase 
relation between the two pendulums were introduced by 
latencies associated with the muscular response, where the 
latencies were proportional to the load on the musculature. 

Because relative phase and the change in stiffness in re- 
sponse to perturbation by ankle torque are both mediated by 
loading on the musculature, we examined relative phases for 
an effect of the ankle torque manipulation. Because both the 
relative inertial load and the period of movement ultimately 
determine relative phase according to Rosenblum and Tur- 
vey's analysis, we investigated whether the relative stiffness 
(i.e., the difference in stiffness between the two hands) would 
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Figure 8. Changes in period from the 0% to 50% ankle torque conditions plotted against the period at 0% ankle torque. (The lower fight 
panel contains means computed for each double pendulum system across the 3 participants. Open squares indicate change computed by 
subtracting measured 0% periods from 50% periods; filled squares indicate change computed by subtracting measured 0% periods from 
predicted 50% periods.) 

index variations in relative phase. 3 Relative stiffness was 
derived by subtracting left- from right-hand stiffness. Varia- 
tions in relative phase with changes in ankle torque are shown 
in Figure 9 plotted against relative stiffness. Relative stiffness 
was regressed linearly on relative phase for each of the three 
torque conditions, 0%, 25%, and 50%. The results for each 

Table 2 
Regressions of 0% Periods on Predicted and Actual Changes 
in Period 

Partidpant Predicted change Actual change 

1 y -- -.24x - .  16 y = -.34x - .29 
r2=.966, p<.001 r2=.361, p<.001 

2 y =  - . 2 1 x -  .18 y =  - . 1 7 x -  .16 
r2=.802, p<.001 r2=.i32, p< .03  

3 y = -.15x + .14 y = -.29x + .33 
r2=.172, p< .02  r2=.136, p< .03  

M y = -.18x + .14 y = - .  19x + .19 
r 2=.987, p<.001 r 2=.668, p< .05  

of the three participants and for the combined data appear in 
Table 3. 

The y-axis marks zero relative stiffness, which is where left 
and fight stiffnesses were equal. All regression lines crossed 
the y-axis at or very close to a relative phase of 180 °. Intercepts 
for the combined data fell within 2 degrees of 180 °. For all 
ankle torque conditions, as shown by significant slopes in all 
regressions, relative phase deviated from 180 ° as relative stiff- 
ness became increasingly nonzero. The right-hand pendulum 
led by more than 180 ° when right stiffness exceeded left 

3 Stiffness is the task-dynamic measure of force generation by 
musculature marshaled to handle the inertial load of a pendulum at 
a given period of movement. When two pendulums representing 
different loads are to be swung at a common period, greater stiffness 
is exhibited at the wrist corresponding to the larger load. When the 
pendulums are of the same length, the loads are equivalent, as are 
the stiffnesses at the two wrists. Finally, when a given load is to be 
moved with a smaller or larger period, the stiffness is increased or 
decreased accordingly. Thus, relative stiffness contains information 
about both the relative loadings and the periods of movement and 
accordingly should be the best index of variations in relative phase. 
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Figure 9. Relative phase plotted against relative stiffness for the 
three ankle torque conditions: Data for all 3 participants. (Filled 
circles represent 0% torque condition; open squares, 25% torque 
condition; open triangles, 50% torque condition.) 

F(3, 66) = 69.55, p < .001, for Participant 3. Relative stiffness 
was significant for all three, p < .001. Ankle torque was not 
significant for Participants 1 and 2 but was significant for 
Participant 3, partial F --- 5.03, p < .03. The interaction was 
significant for Participants 1 and 2mpart ia l  F = 15.35, p < 
.001, for Participant 1, and partial F = 5.7, p < .02, for 
Participant 2 - - b u t  not for Participant 3. 

Overall deviations in relative phase from strict antiphase 
with nonzero relative stiffness decreased with increasing ankle 
torque. The slopes of the regression lines decreased as the 
lines rotated around 180* relative phase at zero relative stiff- 
ness. According to the analysis in Rosenblum and Turvey 
(1988), these results could be explained either by an increase 
in periods or by a decrease in the relative latencies associated 
with the musculature. Because increasing ankle torque was 
accompanied by decreases in periods, the results must be 
attributed to a decrease in relative latencies. 

Summary 

stiffness and by less than 180" when right stiffness was less 
than left stiffness. These results replicated those of  Rosenblum 
and Turvey (1988). 

Slopes decreased with increasing ankle torque, whereas 
intercepts remained essentially invariant, meaning that the 
regression lines rotated around the (0, 180*) coordinate point. 
The 0% and 25% lines crossed one another at ( -0.28,  181.4"), 
whereas the 25% and 50% lines crossed at (0, 178.6") and the 
0% and 50% lines crossed at ( -0.17,  180"). The tendency of 
relative phases to deviate from 180" with nonzero relative 
stiffness diminished with increasing ankle torque. Overall, the 
relative phases approached 180" as ankle torque increased 
from 0% to 50%. To test the significance of  this trend, 
multiple regressions were performed on relative phases of  all 
three participants with a vector for relative stiffness, a vector 
coding for ankle torque level, and a vector representing the 
interaction. The regression for the total model was significant, 
r 2 - .602, F(3,  208) = 104.88, p < .001. The partial F for 
relative stiffness was significant, F = 311.8, p < .001, whereas 
that for ankle torque was not significant. However, the inter- 
action vector was significant, partial F = 12.64, p < .001. 

Similar analyses were significant for all three participants, 
r 2 = .795, F(3,  68) = 87.89, p < .001, for Participant 1; r 2 = 
.647, F(2, 66) = 40.34, p < .001, for Participant 2; r 2 -- .760, 

Left and right stiffnesses, the common period, and the phase 
relation between the wrist-pendulums all exhibited changes 
in response to torques exerted about the ankle. 

Stiffnesses increased with increasing ankle torque. Increases 
were proportional to the inertial load at the respective wrist. 
Stiffness of  the right wrist-pendulum increased more in re- 
sponse to ankle torques when the right wrist-pendulum was 
oscillated alone than when it was oscillated together with the 
left wrist-pendulum. 

Isochrony was preserved over perturbations by ankle 
torque. The common period decreased with increasing ankle 
torque. The stability of  coordination was consistent with the 
proportionality of  changes in stiffness to the local inertial 
load. 

As found in previous studies, the phase relation between 
the wrist-pendulums departed from strict antiphase in pro- 
portion to the asymmetry of  the inertial loads, and thus, of  
the stiffnesses at the wrists. The size of  these departures was 
found to decrease with increasing ankle torque. 

Di scuss ion  

Ignoring the gravitational or pendulum aspect momentar-  
ily, the wrist-pendulum situation corresponds to a rotational 
mass-spring as follows: 10 = - K 0  and 0/0 = - K / I .  The an- 

Table 3 
Right-Left Stiffness Regressed on Relative Phase 

Ankle torque 

Participant 0% 25% 50% 

1 y = -.033x + .500 y = -.027x + .504 y = -.020x + .506 
r 2 --- -  .806 r 2 = .830 r 2 = .769 

2 y = --.051x + .510 y = --.036x + .524 y = --.032x + .524 
r 2 = .846 r 2 = .674 r 2 = .431 

3 y = --.033x + .470 y = --.027x + .461 y = --.029x + .457 
r 2 = .779 r 2 = .672 r 2 = .728 

Combined y = -.035x + .494 y = -.028x + .496 y = -.023x + .496 
r 2 = .724 r 2 = .584 r 2 = .464 

Note. All regressions were significant at p < .001. 
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gular acceleration at each position is determined by the ratio 
of the stiffness to the inertia. Both the task-dynamic stiffness 
and the inertial load determine the torque levels generated by 
the musculature spanning the joint that actually moves the 
joint through its trajectory. Despite this, we found that only 
the inertial load, not the 0% stiffness, determined the amount 
of change in stiffness produced by ankle torques. Ultimately, 
the perturbations must be mediated by the musculature span- 
ning the wrists and reflected in the torques generated by that 
musculature. How can two quantities that both determine the 
torques generated by the musculature be dissociated in me- 
diating the extent of changes in response to ankle torque 
perturbation? The answer lies in the fact that the muscle 
torques are not necessarily equivalent to the applied torques 
actually generating movement. It is possible that only a frac- 
tion of the muscle torques might contribute to the observed 
movements and thus to the task-dynamic stiffness. The total 
muscle torque, therefore, may vary with the inertial load in a 
manner independent of variations in task-dynamic stiffness. 

Relation of Task-Dynamic Stiffness to Muscle Activity 
Task-dynamic stiffness corresponds to variations in torques 

actually producing movement. Task-dynamic stiffness is not 
necessarily equivalent to muscle stiffness and thus is not 
generally an index of muscle torques. The nonunique relation 
between the two is immediately apparent in the following 
demonstration. While grasping a pencil and keeping your 
forearm, hand, and wrist otherwise relaxed, oscillate your 
wrist at a given tempo back and forth from abduction to 
adduction. Next, move the wrist at the same tempo while 
forcefully gripping the pencil as hard as possible. In both 
cases, the torques exerted in moving the hand and pencil back 
and forth were the same because the trajectories were, in 
principle, the same. Despite this, in the latter instance the 
muscles were generating substantial amounts of torque, 
whereas in the former instance they generated considerably 
less. Torques that directly produce movement are not neces- 
sarily equivalent to muscle torques. The relation between 
task-dynamic stiffness and joint stiffness is nonunique. The 
task-dynamic stiffness was ideally the same in both instances, 
whereas joint stiffness varied from low in the first case to high 
in the second case. 

Stiffness has been used in the movement literature at dif- 
ferent levels of analysis that should be distinguished from 
task-dynamic analysis. Stiffness has been used to refer to the 
length-tension relation for isolated muscle (Bizzi, Accornero, 
Chapple, & Hogan, 1981). This is appropriate as long as the 
conditions in which the relation was derived are respected, 
namely, isometric contractions against an external load 
(McMahon, 1984; Partridge, 1979). The usefulness of stiff- 
ness, however, is severely limited in such static situations. 

Stiffness has also been used to refer to the forces muscles 
generate while actively shortening or being lengthened. In 
such circumstances, the force-velocity relation for muscle 
must be taken into account, as well as complex potentiation 
effects associated with the stretch-shortening cycle (Komi, 
1986; McMahon, 1984). The energetic state of the muscle 
also affects the stiffness (~,strand & Rodahl, 1977). The re- 
sulting variation in force is a highly nonlinear function of 

muscle states and history (Partridge, 1979). No extant mod- 
eling equation has captured all of the interrelated mechanical 
properties of muscle. Hasan, Enoka, and Stuart (1985) 
pointed out that stiffness is defined as the time invariant ratio 
of change in force to change in length and that, therefore, no 
stiffness can be assigned to isolated muscle because the ratio 
varies over time. Only when muscle is modeled in the context 
of spinal reflexes does it exhibit behavior that can be described 
in terms of a stiffness. Thus, stiffness can only be used in the 
context of movement to describe behavior that emerges from 
the collective organization of neural, circulatory, and mus- 
cular components. 

Probably the best known use of stiffness in the movement 
literature concerns joint stiffness. In this case, stiffness is 
produced by the activity of at least two opposing muscles 
spanning a joint and acting to preserve the position of the 
joint in the face of sudden perturbations. Experimental deter- 
mination of joint stiffness requires the sudden application of 
an external perturbing torque to a limb segment so that the 
ratio of change in torque to change in angular position can 
be measured. Stiffnesses of reflexively innervated agonist and 
antagonist muscles combine additively to determine the re- 
spective joint stiffness. 4 However, opposing muscles need not 
be actively generating torque in a sustained fashion to produce 
observed joint stiffnesses. Using afferents to detect perturba- 
tion, the muscles can be mobilized reflexively to counter 
resulting changes in position. Furthermore and most impor- 
tant, either strategy can be used. Both underlying organiza- 
tions of joint stiffness have been observed (Berkinblit, Feld- 
man, & Fukson, 1986; Hasan et al., 1985). 

There is no necessary or obvious relation between joint 
stiffness and muscular activity in the context of voluntary 
movement. However, Bizzi and Feldman (among others) 
suggested that limb movements are generated by moving the 
equilibrium point for joint stiffness (Berkinblit et al., 1986; 
Bizzi, 1980; Feldman, 1980, 1986). Bizzi (1980) implied that 
muscle stiffnesses should be actively maintained throughout 
the process, whereas in Feldman's conception this need not 
necessarily be the case (Berkinblit et al., 1986). Bizzi and 
colleagues have produced rather striking evidence in favor of 
equilibrium point control of movement (Bizzi, Accornero, 
Chapple, & Hogan, 198 l, 1984). The de-afferented limb of a 
monkey was moved surreptitiously to a required target posi- 
tion in advance of voluntary movement. When the limb was 
released after movement initiation, it was observed to travel 
back to a position along the intended movement trajectory 
before reversing and completing the intended movement to 
the target. By varying the time at which the limb was released, 
the investigators sampled the hypothesized trajectory of the 
equilibrium point. 

Despite the vividness of this demonstration, there are rea- 
sons to be cautious about the hypothesis. First, as is elaborated 
in the following, the necessarily predominant role of afference 
in the functional organization of behaviors has only recently 
been recognized, but is now well established. In view of the 
essential role of afferents in determining forms of behavior, 

4 Although opposing torques subtract, the stiffnesses of opposing 
muscles sum (Hogan, Bizzi, Mussa-Ivaldi, & Hash, 1987). 
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de-afferent preparations are rather suspect and must be eval- 
uated with extreme care, ultimately in the light of an under- 
standing of behavior performed with the normal benefit of 
afference. For example, Terzuolo, Soechting, and Ranish 
(1974) found that the normally effective antagonist activity 
in loaded ann movements became random and incoherent 
with de-afferentation. Second, as pointed out by Hasan et al. 
(1985), equilibrium point control seems rather inappropriate 
when the goal of movement is not a position of equilibrium, 
as for instance in throwing a javelin, hitting a ball with a 
racquet, or jumping to a maximum height (Bingham et al., 
1989; Bobbert, 1988; J6ris et al., 1985; Van Ingen Schenau, 
1989). Although we might expect equilibrium point control 
in selected behaviors, there is no reason to believe it universal. 
Third, and more to the point, patterns of muscle activation, 
as observed through electromyograph (EMG) recordings, vary 
considerably depending on the speed of movement and the 
inertial load, among other factors (Berkinblit et al., 1986; 
Hasan, 1986; Lestienne, 1979; Wallace, 1981 ). Distinct one- 
burst (agonist), two-burst (agonist-antagonist), three-burst 
(agonist-antagonist-agonist), and multiburst patterns have 
been recorded, in addition to patterns in which activations 
overlap either at points througout movement or--perhaps 
most characteristically for movements to an endpoint--at the 
endpoint of movement. Those who wish to argue for equilib- 
rium point control certainly cannot argue that the conjoined 
stiffnesses of muscles actively and continuously generating 
torques are being modulated universally throughout all move- 
ments. Rather, the most general conclusion is that functional 
flexibility is predominant in motor organization. The orga- 
nization of the musculature is different in different tasks and 
also varies among individuals within a task. 

From this, we can conclude that there was probably flexi- 
bility or variability in the way that the underlying musculature 
was orchestrated in the assembling of observed task-dynamic 
stiffncsses in wrist-pendulum oscillation. Given that our par- 
ticipants were operating in "comfort mode," extensive use of 
cocontractions was not likely. However, a finding in the EMG 
literature is that cocontraction tends to increase with inertial 
load, particularly during the decelerative phases of movement 
(Hasan, 1986; Lestienne, 1979). The natural inference is that 
cocontractions are used to ensure the stability of movement 
and of the joint. Thus, although we might not expect cocon- 
traction or significant joint stiffness throughout the pendulum 
swinging movements, we might expect increasing joint stiff- 
ness at the endpoints of movement with increasing inertia. In 
this case, there would be increases in muscle torques associ- 
ated with increasing inertial loads, which would not be appar- 
ent from an external frame of reference without the external 
perturbations required to reveal changes in joint stiffness. 

How could the task-dynamic stiffness increase in propor- 
tion to the inertial load and not the 0% stiffness? We have 
suggested that muscle torque levels might vary with inertial 
loads in a manner independent of the observed task-dynamic 
stiffnesses. The next question is, how might muscle torque 
levels determine the extent of changes in stiffness produced 
by ankle torques? Other questions also remain. Why should 
the stiffness be increased more by ankle torque when only 
one pendulum is being swung? How might changes in stiffness 

be related to correlated changes in the phase relation between 
the two wrists? Answers to these questions require that we 
examine the relation between task-dynamic stiffness and un- 
derlying resource dynamics in addition to the musculature. 
How might either the nervous system or the circulatory system 
mediate interactions between lower and upper limb activity? 

Before addressing these questions, it is helpful to consider 
one possible reason for the third participant's failure to exhibit 
a response to the ankle torque perturbation. A possibility is 
that this participant did not use cocontractions as much as 
did the others for stability of movement. If so, then we should 
expect to see a difference in fluctuations. We computed the 
von Hoist amplitude and period fluctuations as described by 
Rosenblum and Turvey (1988). The advantage of these meas- 
ures is that they take into account potential asymmetries 
between the flexion and extension phases of a movement 
cycle. Computed for each trial, fluctuations are described as 
a percentage of mean trial amplitude or period, respectively. 

We performed an ANOVA on amplitude fluctuations with 
participant as a between-subject variable and ankle torque, 
hand, and system as within-subject variables. The only signif- 
icant main effect was for hand, F(I ,  15) = 6.09, p < .03. The 
Participant x Hand interaction also was significant, F(2, 15) 
= 9.21, p < .003. The result can be seen in Figure 10. Where 
Participants 1 and 2 exhibited equivalent amplitude fluctua- 
tions in the left and right hands, Participant 3 did not. 
Furthermore, left-hand fluctuations for Participant 3 were 
greater than those for Participants l and 2. In simple effects 
tests, the hand variable was significant only for Participant 3, 
F(l ,  15) = 24~29, p < .0001, whereas the participant variable 
was significant only for the left hand, F(2, 15) = 12.37, p < 
.001. The results for period fluctuations reflected those for 
amplitude fluctuations in that IeR- and right-hand fluctuations 
were equivalent for Participants 1 and 2 and unequal for 
Participant 3. For Participant 3, the left-hand fluctuation was 
significantly greater, as shown in a simple effects test, F(1, 15) 
= 4.84, p < .05. 

Participant 3 seems to have used a strategy in assembling 
task-dynamic stiffness that allowed greater variability in re- 
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Figure I0. Mean left- and fight-hand amplitude fluctuations for 
each participant. (Huctuations are expressed as percentages of mean 
amplitude for a trial. Squares represent Participant I; triangles, Par- 
ticipant 2; circles, Participant 3.) 



374 BINGHAM, SCHMIDT, TURVEY, AND ROSENBLUM 

suiting left-hand trajectories. This participant may have tol- 
erated greater variability while avoiding cocontractions and 
maximizing relaxation into comfort mode. As a result, muscle 
torques would not have varied or would have varied less with 
inertial loads for Participant 3. 

We now turn to a consideration of how the circulatory 
system might have mediated interactions between lower and 
upper limb activity. 

Interactions Mediated by the Circulatory System 

Torques generated about the ankle produced increases in 
stiffness at the wrists. How might blood circulation be relevant 
to increases in stiffness? Blood flow brings oxygen and fuel to 
a muscle and carries away metabolites that if allowed to 
accumulate would impair functioning (Astrand & Rodahl, 
1977; McMahon, 1984). Determinants of blood flow act as a 
throttle on muscle construed as a motor (Bloch & Iberall, 
1982). Power output based on anaerobic metabolism can 
continue for a brief period following cessation of blood flow, 
after which the muscle effectively shuts down (Astrand & 
Rodahl, 1977; Laughlin & Armstrong, 1985). More relevant 
to our concern, however, is the fact that the power output of 
a muscle increases with increased oxygen made available by 
increased blood flow, all else being equal. Active motor units 
absorb the additional oxygen made available and use it to 
generate additional power (Astrand, Cuddy, Saltin, & Sten- 
berg, 1964; Astrand & Rodahl, 1977; Bloch & Iberall, 1982; 

Ekblom, Huot, Stein, & Thorstensson, 1975; Fagreus, Karls- 
son, Linnarsson, & Saltin, 1973; Hill, Long, & Lupton, 1924; 
Hughes, Clode, Edwards, Goodwin, & Jones, 1968). Power is 
the time rate of mechanical energy production. Increases in 
power show up as increases in stiffness. Might the activity of 
muscles spanning the ankle joint produce increased blood 
flow through the muscles spanning the wrists? Circulatory 
organization has rarely been considered by human-movement 
scientists as a source of constraint on forms of movement. 
What are the determinants of blood flow? 

. Blood flow through a muscle is determined by three factors 
(Astrand & Rodahl, 1977; Laughlin & Armstrong, 1985). The 
first is the local capacity for flow determined by the relative 
dilation of the blood vessels in a muscle. The extent of dilation 
is determined by smooth muscles surrounding the vessel walls. 
These respond both to signals from the sympathetic nervous 
system and to levels of local metabolites produced by muscle 
activity. The second factor is global blood pressure, which is 
a function in turn of the heart rate together with the sum of 
the local resistances in all the muscles? The third factor is the 
pumping action of muscular contraction itself (Laughlin, 
1987). When the muscle contracts, venous blood is forced out 
of the muscle vessels. When the muscle relaxes, a vacuum is 
created in the vessels that draws arterial blood into the muscle. 
The strength of the pump is relative to the strength of mus- 
cular contractions? 

Assuming constant relaxation and maximum dilation, in- 
tramuscular blood flow is a linear function of the global 
perfusion pressure. Assuming relaxation and constant perfu- 
sion pressure, blood flow is a linear function of the capacity 
of the vasculature. Addition of contraction-relaxation cycles 

reduces the time during which the muscle is receptive to flow 
and adds locally to the perfusion pressure during relaxation 
in proportion to the strength of preceding contraction. 

Blood flow through a muscle increases immediately with 
muscle activity. Moderate activity induces about a three-fold 
increase in flow. The increase is produced by both increased 
cardiac rate and a decrease in the resistance of the muscle 
vasculature. The flow is targeted to the active muscle by 
sympathetic nervous activity that increases the resistance in 
inactive muscles in proportion to the changes in heart rate 
(Laughlin & Armstrong, 1985). In fact, these two changes 
together increase the global blood pressure. The vasculature 
in the active muscle is made insensitive to the sympathetic 
nervous signals by its response to local muscle metabolites 
and a local linkage to motoneurons. The extent of the result- 
ing dilation is proportional to the level of contractile activity 
in the muscle. 

An increased heart rate is elicited with the initiation of 
activity in a muscle through redundant central and peripheral 
control. A muscle-to-heart reflex path produces an increased 
heart rate within 500 ms of muscle activation, as shown by 
inducing contraction through extrinsic electrical stimulation 
(Hollander & Bouman, 1975). A central pathway provides 
redundant control, as shown by the production of increased 
heart rate with voluntary contraction and a blockade of the 
reflex (Leonard et al., 1985). The cardiovascular response is 
proportional both to the amount of muscle mass and to the 
strength of contraction (Hollander & Bouman, 1975; Lind, 
Dahms, Williams, & Petrofsky, 1981 ). However, increases in 
heart rate and blood pressure are disproportionally greater for 
static exercise (Asmussen, 1981; Lind et al., 198 l). 

From this information about the circulatory system, we 
deduced the circulatory effect of ankle torques on the 
rhythmic activity about the wrists. The receptive state of the 
vasculature of the wrist muscles is determined by the level of 
their contractile activity. We have suggested that this should 
vary primarily with the inertial load at the wrist. With con- 
traction of the muscles spanning the ankle, the heart rate 
accelerates in proportion to the level of that contraction. The 
acceleration is also in proportion to the relevant muscle mass 
about the ankle. The muscles used in plantar flexion include 
the gastrocnemius, the soleus, peroneus longus, peroneus 
brevis, flexor hallucis longus, and tibialis posterior. Together, 
these muscles compose a large muscle mass. The gastrocne- 

Resistance to flow and capacity for flow are the inverse of one 
another. 

6 The typical time required for blood to refill the vessels is about 
700 ms. This figure is striking because it is close to preferred periods 
of cyclic motions observed in many studies, including ours. The 
timing of activity in the musculature is crucial given this relaxation 
time and the need for arterial blood to maintain aerobic metabolism. 
In particular, "the amount of time spent in contraction and relaxation 
is important because blood flow is impeded during muscle contraction 
and, as a result, most (if not all) blood flow occurs during relaxation" 
(Laughlin, 1987, p. H995). Clearly, circulatory dynamics contribute 
strongly to the determination of timing in coordinated rhythmic 
movements. 
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mius alone composes the majority of the mass in the calf of 
the lower leg. 

With the increase in heart rate, the global blood pressure 
increases, increasing the blood flow through the active muscles 
at the wrist. The total flow through each wrist muscle is a 
function of both the global pressure and the local capacity. 
Those with greater capacity exhibit a greater net increase in 
flow. With increased flow, the power generated by the muscle 
increases. A small additional increase in flow accrues from 
the increased action of the muscle pump. Altogether, for a 
given torque exerted about the ankle, the power output at the 
wrists increases in proportion to the local capacity, which is 
determined in turn by the inertial load. 

Does heart rate actually increase with the level of ankle 
torque, and if so, how much? We investigated this question 
at Indiana University (Bloomington, Indiana) with 4 male 
participants, different from the 3 participants in the original 
study. The participants ranged from 23 to 35 years of age. 
Three were moderately physically fit, and the fourth partici- 
pant was a well-trained runner. First, resting pulse levels were 
measured at the wrist during 15-s intervals. Then maximum 
ankle torque levels were determined on the Cybex machine. 
Finally, participants alternated by trial in exerting either 25 % 
or 50% ankle torque on the Cybex. Each participant per- 
formed four trials at 25% and four trials at 50%. The 25% 
and 50% trials were alternated. All four participants per- 
formed the first 50% trial, then the first 25% trial, then the 
second 50% trial, and so forth. For each trial, the resting pulse 
was measured for 15 s. The participant next established the 
requisite ankle torque level. This took 2.25 s (SD = 1.15) on 
average. A record of torque levels was produced on paper tape 
with a Dual Channel Recorder. Each participant then main- 
rained the torque level for 15 s while his pulse was measured. 

The results in terms of proportion of increase above resting 
level for each participant can be seen in Figure 11. A repeated- 
measures ANOVA was performed on heart rates with ankle 
torque (0%, 25%, and 50%) and trial (1--4) as variables. Only 
the ankle torque factor was significant, F(2, 6) -- 5.69, p < 
.04. The mean heart rates in beats per minute for the 0%, 
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Figure 11. Changes in heart rate for 4 participants as a proportion 
of mean resting heart rate. (Rates were normalized by using the mean 
resting heart rate for each participant, respectively. Error bars repre- 
sent the standard error.) 

25%, and 50% ankle torque conditions were 67.75, 72.00, 
and 77.25, respectively. However, as shown in Figure 11, 
results varied between participants. The runner showed al- 
most no increase in heart rate, even at 50% ankle torque, 
whereas 2 other participants exhibited 20% increases, and the 
fourth showed a 12% increase. The lack of increase in heart 
rate for the exceptionally fit participant provides another 
possible account for the results of Participant 3 in the original 
study. This participant was a particularly fit practitioner of 
aikido and may have experienced no significant changes in 
heart rate, with a consequent lack of change in stiffnesses at 
the wrists. 

How significant is a 20% increase in heart rate for its impact 
on global perfusion pressure? First, this figure may somewhat 
underestimate increases that occurred in the original study, 
because heart rate continues to increase under conditions of 
isometric contraction, reaching steady state only after at least 
a minute (Leonard et al., 1985). The need to coordinate 
pendulum swinging with activity at the ankle meant that 
somewhat longer intervals of ankle torque intervened before 
the 15-s measurement period was initiated in the original 
study. Nevertheless, a 20% increase above resting level is 
significant in terms of its impact on perfusion pressure. One 
reason is that the effect of the heart on perfusion pressure is 
a function not only of heart rate, but also of stroke volume, 
or the volume of blood pumped at each stroke. Stroke volume 
varies with heart rate. In seated subjects, stroke volume in- 
creases from about 60% of maximum stroke volume at resting 
heart rates to about 80% of maximum stroke volume at heart 
rates 20% above resting level (~,strand & Rodahl, 1977). Thus, 
stroke volume increases by about 33% of its level at resting 
heart rates. This means that the amount of blood pumped by 
the heart increases by about 50% as heart rate increases from 
resting to 20% above resting level. 

A second reason for this being a significant increase is that 
global profusion pressure is a function of the sum of the local 
resistances as well as of heart rate (and stroke volume). For a 
given increase in heart rate, the increase in pressure is less if 
more muscles are active and receptive. This effect is important 
generally because the capacity of the peripheral vascular beds 
exceeds the ability of the heart to fill them with flow (Saltin, 
Gollnick, Rowell, & Sejersted, 1986). There is a need for the 
sympathetic nervous activity, which increases the resistance 
of inactive muscles to prevent increases in flow through them 
with changes in heart rate. With ankle muscles active but 
contracted and thus unreceptive, and only wrist muscles 
active, and thus receptive, the increase in perfusion pressure 
for the wrist muscles should be significant, with a 50% in- 
crease in the amount of blood pumped by the heart. 

The increase in flow through the muscles about a given 
wrist for a given increase in heart rate also should be greater 
when the muscles about the other wrist are inactive. We found 
that the increase in stiffness for the right wrist-pendulum in 
response to ankle torque was greater when it was oscillated 
alone than when it was oscillated in coordination with the left 
wrist-pendulum. If this was an effect of differential blood 
flows for single versus double wrist-pendulums, then the 
stiffness for any given wrist-pendulum oscillated in isolation 
should be greater than its stiffness when oscillated in coordi- 
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nation with another wrist-pendulum, all else being equal. This 
is indeed the general finding. 

As we mentioned in the introduction, the period for a 
pendulum swung together with another pendulum of the same 
length is typically longer than that for a pendulum swung in 
isolation. Kugler and Turvey (1987) reported periods, masses, 
and lengths for four different pendulums, all swung in isola- 
tion and in combination by each of 4 participants. Returning 
to those data, we computed the stiffnesses for the four wrist- 
pendulums oscillating in isolation and oscillating in coordi- 
nation with pendulums of equal length and mass. The mean 
stiffnesses for the four pendulums swung either in coordina- 
tion or in isolation are shown in Figure 12. In a repeated- 
measures ANOVA with context (isolation or coordination), 
hand, and pendulum (1-4) as variables, only the context 
variable was significant, F(I, 3) = 101.9, p < .002. The overall 
mean stiffness values were .568 kg/s 2 in isolation and .220 
kg/s 2 in coordination. Thus, there was a drop in stiffness when 
a wrist-pendulum was oscillated in coordination with another 
wrist-pendulum of equal length. This drop has been observed 
in other experiments that used the pendulum-swinging task 
(Schmidt & Turvey, 1989). The implication is that the addi- 
tional musculature receptive to blood flow slightly reduces 
the blood flow to the given muscles, with a resultant drop in 
stiffness. 

In sum, circulatory organization provides a reasonable pre- 
liminary account for observed increases in stiffness with in- 
creasing ankle torque and for the proportionality of increases 
in stiffness to inertial load. Circulatory organization also 
accounts for the relatively larger increase in stiffness that 
occurs for a wrist-pendulum oscillated alone, and this result 
becomes consistent with the finding that stiffnesses were 
generally higher for wrist-pendulums oscillated alone than for 
those oscillated in combination with a wrist-pendulum of 
equal length. 

Interactions Mediated by the Nervous System 

How might we account for the observed interactions be- 
tween ankle and wrist activity as mediated by the nervous 
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Figure 12. Mean stiffness for each pendulum swung either in isola- 
tion or together with another pendulum of equal length and mass: 
Data derived from Kugler andTurvey (1987). (Open squares repre- 
sent single pendulums; open triangles, double pendulums.) 

system? Until fairly recently, the overriding focus of research 
on the neural generation of rhythmic movements has been 
on central pattern generators (CPGs). The CPGs had been 
considered the predominant factor responsible for the patterns 
of observed behavior (Grillner, 1975, 1976, 1981, 1985). De- 
afferented preparations exhibited many properties common 
to normal rhythmic movement. Also, in so-called "fictive 
locomotion," patterns comparable to normal locomotion 
have been measured by recording the activity of neurons in 
the spinal cords of paralyzed animals. The need for afferent 
input has always been recognized, however, because the fre- 
quencies exhibited by de-afferented and paralyzed prepara- 
tions were substantially below those observed in normal activ- 
ity. Afferent input was considered to have a role in determin- 
ing tonic influences used merely to tune the frequencies of 
rhythmic patterns predetermined by a CPG (Grillner, 1976, 
1985; Rossignol, Lund, & Drew, 1988). It has also been 
recognized that afferents are required for precise coupling 
between limbs, for sufficient and exact force levels, and for 
precision in positioning. But none of these challenged the 
surmised role of afferents as mere tonic influences on prees- 
tablished phasic processes. 

More recently, however, the essential role of afferent ele- 
ments in establishing phasic patterns of behavior has become 
recognized (Gelfand, Orlovsky, & Shik, 1988; Pearson, 1989). 
Rhythmic units in locomotion exhibit autonomous organi- 
zation by allowing proprioceptors to determine switching 
between flexion-extension phases of movement on the basis 
of the limb's reaching a prescribed endpoint position. If the 
limb is delayed in transit, switching does not occur until the 
limb reaches the requisite position. The advantage of auton- 
omous organization is independence and stability in the face 
of external perturbations or changes in the properties of the 
musculature, such as fatigue (Pearson, 1989). Of course, this 
does not exclude tonic afferent influences on rhythmic units. 

Tonic influences originate in muscle receptors, such as 
primary spindle endings and golgi tendon organs, which re- 
spond in proportion to the contractile state of individual 
muscles, as indexed by the number of active fibers (Loeb, 
1985). This influence is projected through Ia and Ib fibers, 
respectively, to the spinal cord, where it is conveyed to the 
cerebellum through the dorsal and ventral spino-cerebellar 
tracts (Arshavsky, Gelfand, & Orlovsky, 1986; Gelfand et al., 
1988). The dorsal tract (DSCT) in particular transmits infor- 
mation proportional to the level of activity of individual 
muscles. The reticulo-spinal (RS) tract receives input from 
the DSCT both in the cerebellum and preceding the cerebel- 
lum. The RS neurons exert a descending tonic influence on 
limb behaviors at the spinal cord. The timing of behaviors is 
not directly affected; only the level of activity in the respective 
muscles is affected. However, given the autonomous organi- 
zation of rhythmic movements, the effect of tonically induced 
increases in muscle activations is to increase accelerations and 
peak velocities to fixed endpoints, which in turn increases the 
frequency of oscillation. The extent of the increase is propor- 
tional to the level of tonic activity in the original limb (Ar- 
shavsky et al., 1986). 

This organization accounts for our observed increases in 
stiffness at the wrists in proportion to levels of torque at the 
ankle. Greater activity in ankle muscles results in proportional 
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tonically induced increases in wrist muscle activations. The 
proportionality of increases to the local inertial load is related 
to the recruitment of motor units within a muscle. Greater 
torque levels required by larger inertial loads are provided by 
activating a larger number of motor units. If tonic increases 
were distributed equally across all active motor units, then a 
greater number of active units means a greater total increase 
in torque levels. In addition, if tonic influences provoked 
additional recruitment following the size principle, the larger 
fast-twitch units are recruited with larger inertial loads 
(Henneman, Somjen, & Carpenter, 1965). That is, according 
to the size principle, the increment in torque is proportional 
to the level of torque at the time (McMahon, 1984). This also 
results in greater increases in torque with larger inertial loads. 

However, nervous-system interactions seem to provide no 
account for the increased effect of ankle torque perturbations 
on wrist-pendulums oscillated in isolation. (None, in any case, 
that we could discover in the current literature.) The same is 
true with respect to an account for observed variations in 
relative phase. We have no intention of ruling out the possi- 
bility of such an account and state only that we are not 
currently aware of one. 

Interactions and Changes in Relative Phase 

The relative phase between the wrist-pendulums departed 
from strict antiphase in proportion to the difference in the 
inertial loads at the two wrists. The maximum lag times 
associated with these deviations from a 180" relative phase 
were on the order of 100 ms. These lag times may be attributed 
to the difference in electromechanical response because of the 
difference in force requirements, given different inertial loads 
and assuming strict antiphase of respective neural input (Ro- 
senblum & Turvey, 1988). The variation in electromechanical 
response time with the level of force to be developed is a well- 
established result (Bell & Jacobs, 1986; Cavanagh & Komi, 
1979; Norman & Komi, 1979) that has been attributed to the 
time required to stretch the series elastic component of mus- 
cle. 7 This attribution was inspired by the asymmetry of delay 
for eccentric and concentric muscle contractions, eccentric 
delays being smaller (Cavanagh & Komi, 1979). The series 
elastic component becomes stretched more rapidly if the 
muscle is being lengthened by external means during the 
contraction. 

We found that the deviations of wrist movements from 
strict antiphase decreased with increasing ankle torque. The 
decreases were the opposite of what was expected from the 
fact that the periods of movement decreased. By itself, a 
decrease in period should produce an increase in the relative 
differences from antiphase because the difference in delay 
times make up a larger portion of the cycle time (Rosenblum 
& Turvey, 1988). In addition, the implied increases in muscle 
force should exacerbate the differences in delay because the 
electromechanical delay is an accelerating function of the 
force level to be attained (Bell & Jacobs, 1986). However, an 
account derived on the basis of an assumed increase in blood 
flow entails that not just the force but also the power generated 
by the muscle was increased by the increase in available 
oxygen. Power is the rate of energy production or, alterna- 
tively, force multiplied by velocity of shortening. The impli- 

cation is that the contractile elements in the muscle shorten 
more rapidly. The result is a reduction of the electromechan- 
ical delay because the targeted force level is reached more 
quickly. 

An account in terms of neural interactions requires that a 
shift in the relative phase of the respective neural innervations 
results from the tonic descending influence on the wrists. 
There is no evidence to support this possibility. Rather, the 
distinguishing characteristic of tonic as opposed to phasic 
influences is that tonic influences have no direct effect on the 
timing of muscle activations. A neurally based account, there- 
fore, remains to be discovered. 

Need for Analysis in Terms of Task-Specific Dynamics 

Where are the interactions between ankle and wrists me- 
d ia ted- in  the circulatory system or in the nervous system7 
We suggest that both systems must be involved. Interactions 
of the kind examined in this article are to be expected from 
the extant understanding of the physiology of these systems. 
The nervous, circulatory., and muscular systems are thor- 
oughly interdependent (Astrand & Rodahl, 1977; Bloch & 
Iberall, 1982; Iberall, 1974, 1990, and citations contained 
therein). The evidence that we have presented for circulatory 
involvement, reasoning in part from the literature as we have, 
is somewhat circumstantial. The next stage of research cer- 
tainly requires direct measurements, during the pendulum- 
swinging task, of circulation in the musculature spanning the 
wrists. Nevertheless, the way that the pieces have consistently 
fallen into place in this complex puzzle provides fairy strong 
support for the role of circulatory interactions in determining 
observed forms of behavior. Of course, circulatory involve- 
ment presumes nervous activity, because among other reasons 
the smooth muscles that help control circulation receive 
neural input. The bottom line is that rhythmic movements 
about different joints are bound to interact though the global 
and continuous subsystems of the human action system. 

Movement organization has often been conceived as a 
matter of imposing prescribed trajectories on the motor ap- 
paratus through appropriate control structures. Such an ap- 
proach essentially reduces coordination to an implicit conse- 
quence of a solution to the problem of control. The challenge 
for such an approach is the need to anticipate and control for 
perturbations arising from interactions. The problem has been 
discussed most often in the context of interactions that arise 
among the link segments. Recent advances in computational 
schemes for inverse dynamics have given apparent promise 
to the so-called "trajectory formation" approach (Hinton, 
1984). However, the progress is limited to link-segment inter- 
actions. Interactions produced by biarticular muscles have 
not been addressed. Interactions associated with the circula- 
tory system create extreme difficulty for an explicit control- 
oriented approach. 

The alternative is to consider ways that the action system 
might perceive qualitative properties of its own emerging 
dynamics arising from interacting nonlinear resources and to 

7 The effect of variations in the inertial load has also been recog- 
nized in the reaction time literature (Anson, 1989). 
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explore how those resources, when manipulated, contribute 
to the resulting dynamic (Beck, 1989; Beck & Bingham, in 
press; Bingham, 1988; Bingham et al., 1989; Kelso & Kay, 
1986; Kugler, 1986; Kugler & Turvey, 1987, 1988; Schrner 
& Kelso, 1989; Thelen, Kelso, & Fogel, 1987). Certainly, we 
should not be able to control anything that we cannot per- 
ceive. 8 The universal nonlinearity of  components (e.g., link 
segments, muscles, nerves, and circulation) and the thorough- 
ness with which interactions pervade the system also ensure 
that perception is required to keep track of  the organization 
that emerges. Of course, no functionally effective behavior is 
possible without control, but it seems best to first discover 
what organizations arise to be controlled (Beck, 1989, 
Bingham, 1988). The difficulty we encounter when exploring 
emergent organization is functional flexibility. There are dif- 
ferent ways of  performing a given task: Our only alternative 
is to focus on the constraints that limit possible organization 
or performance. Many constraints originate in interactions, 
so we turn our attention to these. 

We discovered that tonic activity about the ankle affected 
rhythmic activity about the wrists and that the extent of  the 
perturbation was proportional both to the level of  tonic 
activity and to the inertial load oscillating about the wrist. 
The result implies that the rhythmic activity in one wrist 
might interact with and thus constrain concurrent rhythmic 
activity at the other wrist. However, we are not yet in a 
position to model the coupling. The reason is that we lack 
information concerning the specific variation in perturbation 
with variation in the level of  perturbing activity. For instance, 
the coefficient a in Equation (7) varies most likely as a 
nonlinear function of  the level of  ankle torque. The introduc- 
tion of  phasic variations in activity at the ankle has different 
consequences in terms of  circulation or nervous activity. 
Oscillations will not communicate through the circulatory 
system, but they can follow neural routes similar to those 
described earlier to exert phasic descending influences on 
rhythmic activity at the wrists (Arshavsky et al., 1986). Thus, 
specifically rhythmic perturbations need to be investigated 
before the resulting coupling can be described. 

8 Note in this regard that participants were not aware of either the 
increases in stiffness or deviations in relative phase from strict anti- 
phase. These properties of their movements, therefore, cannot have 
been controlled by them in these respects. 
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Appendix A 

Testing the Adequacy of a Linear Model 

To determine the adequacy of the linear model for predicting 
periods, predictions from the linear approximation should be com- 
pared to those from the original nonlinear model. For given values 
of stiffness, pendulum length, and mass, the linear model produces a 
period value that is invariant over variations in amplitude. In contrast, 
the nonlinear model produces periods that vary with amplitude 
increasing at an accelerating rate with increasing amplitudes. For the 
simple pendulum alone, the linear model is a good approximation 
for amplitudes up to about 20* (Seto, 1964). This means that periods 
produced by the nonlinear simple pendulum model do not vary 
appreciably with amplitude within this range. 

The equation for the nonlinear model corresponding to Figure 1 
is as follows: 

ML20(t) + KO(t) + gML sin[O(t)] = 0. (A1) 

The total force varies with position according to the contributions 
of the gravitational term and the stiffness term. The curvature of the 
graph of the total force versus position reflects the nonlinearity of the 
system as seen in the right panel of Figure A 1. However, as seen in 
the left panel, the extent of the nonlinearity decreases with increasing 
values of the stiffness, K. 

The adequacy of the linear approximation is determined by the 

degree of variation in periods over the relevant range of amplitudes 
for the nonlinear system. The mean amplitudes exhibited by partici- 
pants in the pendulum-swinging experiments vary across participants 
from about 5 ° to about 40 °. Equation (AI) cannot be solved analyti- 
cally. The periods must be derived by numerical methods. Using a 
fourth-order Runge-Kutta computation (At = .025), periods corre- 
sponding to amplitudes ranging between 5.7 ° (. 1 rads) and 43.0 ° (.75 
rads) were computed. We used a simple pendulum length of 0.5 m 
and a mass of I kg. These values represent the largest pendulum used 
in the experiment. Because the graphs corresponding to values for 
the shortest pendulum used look the same as in Figure A1, we 
computed periods only for the largest pendulum values. Stiffness 
values representing the maximum of the range of observed stiffness 
(K = 5) and a value somewhat greater than the minimum of the 
range of observed stiffness close to zero (K = -0.4) were used to 
capture the best and worst case instances, respectively, corresponding 
to the left and right panel of Figure A 1, respectively. 

For K small, periods at an amplitude of 43 ° i n c r ~  by 4% of 
the value at 5.7 °. For K large, periods increased by 2% over the same 
range. (Periods for an amplitude of 57.3 ° [1.0 rads] increased by 7% 
and 3%, respectively.) Thus, in the worst case, periods varied by only 
4%, indicating that the linear form of the model is entirely adequate 
for the range of values employed in the experiment. 
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Figure A1. The top panel represents simulated variations in torque for the wrist pendulum system with a large amount  of 
stiffness; the bottom panel represents those with a small amount of stiffness near 0. (Vertical lines mark the largest amplitude 
observed in participants' movements.) 

A p p e n d i x  B 

D e r i v a t i o n  o f  t h e  M o d e l  

By integrating twice, solutions to Equation (4) may be written as 
follows: 

0R(t) = ARsin(~oRt + ~*), 

8L(t) = Atsin(o:Lt + 4~*), (B1) 

where AR and AL are the amplitudes, WR and wL are the frequencies, 
and ~* = CR - eL is the relative phase. Because the task requires the 
two systems to run at the same frequency, ~0R = O:L = ~0. Dividing 
each equation by the respective amplitude, we obtain 

oR(t) oL(t) 
o*(t) . . . . .  sin(opt + ¢*). (B2) 

AR AL 

After dividing by the respective amplitudes and ML 2, Equation (4) 
may be written as follows: 

0R(t) 

0L(t) 0L(/) + O~ = 0. (B3) 
AL 

Given (B2) and the equivalence of the frequencies, we obtain 

0*(t) 0R(t) -- 0L(t) (B4) 
AR AL " 

Scaling Equation (4) by the respective amplitudes and using (B2) and 
(B4), we write the equations in common variables, as follows: 

MRL~ 0*(t) + [KR + gMRLR]0*(t) = 0, 

MLL~ 0*(t) + [KL + gMLLLIO*(t) = 0. (B5) 

Since the asterisked variables are simultaneously parameterized as in 
the two equations, we summed these two equations to obtain Equa- 
tion (5). 
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